123

 

ISSN 0536-1028 (Print)              ISSN 2686-9853 (Online)  

ФГБУН Институт горного дела УрО РАН
Ассоциация «Взрывники Урала» при участии Уральского управления Ростехнадзора
X Уральский горнопромышленный форум
IX Научно-практическая конференция с международным участием
«ТЕХНОЛОГИЯ И БЕЗОПАСНОСТЬ БУРОВЗРЫВНЫХ РАБОТ НА ОТКРЫТЫХ И ПОДЗЕМНЫХ РАЗРАБОТКАХ УРАЛА»
2224 ноября 2022 г.
г. Екатеринбург

Уважаемые коллеги!

Приглашаем вас 22–24 ноября 2022 г. принять участие в IX Научно-практической конференции «Технология и безопасность буровзрывных работ на открытых и подземных разработках Урала», организуемой Институтом горного дела УрО РАН и Ассоциацией «Взрывники Урала».

Конференция пройдет в рамках X Уральского горнопромышленного форума, включающего выставку «Рудник Урала», деловые встречи специалистов и руководителей компаний России.

ТЕМАТИКА КОНФЕРЕНЦИИ

  • Теоретические и экспериментальные исследования разрушения горных массивов буровзрывным способом
  • Научно-практические вопросы бурения взрывных скважин и шпуров;
  • Взрывные работы на горнорудных и нерудных карьерах и предприятиях Урала
  • Свойства ВВ и физика разрушения горных пород
  • Обрушение зданий, валка сооружений взрывным и невзрывным способами
  • Прочие специальные взрывные работы

РЕГЛАМЕНТ КОНФЕРЕНЦИИ

22 ноября    МВЦ «Екатеринбург-ЭКСПО», г. Екатеринбург, Экспо бульвар, д. 2, Павильон № 1
с   9 30 до 18 00   работа выставки «Рудник Урала»
с 10 00 до 12 00   заседание Горно-металлургического Совета Уральского Федерального округа
с 12 00 до 13 00   церемония официального открытия Форума и Выставки
    осмотр экспозиций почетными гостями, пресс-подходы, интервьюирование, фотографирование
с 15 00 до 15 30   регистрация участников Конференции «Технология и безопасность буровзрывных работ на открытых и подземных разработках Урала»
с 15 30 до 18 00   работа Конференции «Технология и безопасность буровзрывных работ на открытых и подземных разработках Урала»
     
23 - 24 ноября   выездные заседания Ассоциации «Взрывники Урала»
23 ноября с 10 00 до 17 00   Эмульсионные взрывчатые вещества
Место проведения - НАО НИПИГОРМАШ (г. Екатеринбург, район Вторчермет, ул. Симская, 1. Тел.: 8 (343)295-85-07
24 ноября с 9 00 до 18 00   - г. Невьянск, Музей истории Невьянского края и Наклонная башня Демидовых и Невьянский цементный завод  (буровзрывные работы на нерудных карьерах)
    - пос. Малышева г. Асбест, Мариинский прииск (буровзрывные работы в подземном руднике и обогатительная фабрика с редкоземельными полезными ископаемыми)
    - г. Дегтярск, ООО «Протол» (посещение модульной линии по производству взрывчатых компонентов эмульсионных ВВ)
    (Отъезд автобусами в 9 00 утра от ИГД УрО РАН, г. Екатеринбург, ул. Мамина- Сибиряка, 58)

 

ПУБЛИКАЦИЯ МАТЕРИАЛОВ

Труды конференции будут опубликованы в ежегодном сборнике «Технология и безопасность взрывных работ».

 

РЕГИСТРАЦИОННЫЙ ВЗНОС

10 000 рублей с предприятий, не входящих в состав Ассоциации «Взрывники Урала».

КОНТАКТЫ ОРГКОМИТЕТА

По вопросам проведения конференции обращаться:

Берсенев Геннадий Порфирьевич, ген. директор Ассоциации «Взрывники Урала», к.т.н. - тел.: +7 (343) 201-11-23

Флягин Александр Сергеевич, м.н.с. ИГД УрО РАН - тел.: +7 905 808-57-08, е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Кутуев Вячеслав Александрович, н.с. ИГД УрО РАН - тел.: +7 963 444-79-96, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

УДК 330.15
DOI: 10.21440/0536-1028-2019-4-98-105

Ivanov A. N., Ignatieva M. N. Economic appraisal of consequences at subsoil resources exploitation. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 4: 98–105 (In Russ.). DOI: 10.21440/0536-1028-2019-4-98-105

Relevance. Closer attention to economic measures of state regulation of nature resources management in modern conditions requires clearing up evolution in the tools of economic appraisal of anthropogenic impacts conditioned by subsoil resources exploitation. Research aims to determine the sequence of stages in economic substantiation of environmental impact assessment (EIA), stating the reasons slowing down the process of economic appraisal of consequences which reduces the reliability of economic effectiveness determination for measures mitigating and preventing negative impacts.
Research methodology is based on generalization and analysis of methodological approaches to economic appraisal of environmental impact consequences under subsoil resources exploitation.
Research results. Results generalization and analysis of research of consequences economic appraisal allowed to distinguish some sequent stages of this process interconnected with institutional transformations in EIA. At the first stage there are fragmentary determinations of economic damage caused by natural resources loss and lands removal from agricultural use. At the second stage, methodological supply is developed for consequences economic appraisal conditioned by contamination and removal (depletion) of natural resources. An exception is the consequences associated with surface and lithosphere massif shape variation. The requirement to consequences economic appraisal fulfillment under EIA appears in official documents only after EIA procedure regimentation, and is initially of rather uncertain character: it is present in some documents and absent in others. As a result, the development of unified requirements to execution of economic appraisal can be referred only to the moment of passing СП 11-101-95 (code practice) in 1995. Yet, summary table of ecological-economic appraisal of industrial facilities construction (reconstruction) in part “Ecological-economic effectiveness of investment in construction” includes only the list of estimated cost of environmental facilities and measures. In May 2000, new Statement on environmental assessment of future business or other activities in the Russian Federation was approved with the purpose of establishing uniform rules of EIA organization and fulfillment, and the requirement of consequences economic appraisal is out of the picture both in this Statement and in EIA guidelines. Today ISSN 0536-1028 «Известия вузов. Горный журнал», № 4, 2019 105 the given Statement is an official document regulating EIA, in which only in part 3.2.2.“Examination of future business and other activities according to EIA” there is a directive on effectiveness assessment of future activity on mitigation and prevention of negative impact. At the third stage, beginning with 1995, methodological recommendations have been progressively detailed, a range of subject methodologies appears, as well as the methodological approaches taking into account regional specifics.
Summary. It follows from the analysis that economic appraisal of consequences is not carried out at the pre-project stage, though methodological supply for it has been prepared. Desertion or insufficient fulfillment of EIA economic substantiations is conditioned by the lack of uniform regimentation of this process and the lack of the corresponding methodological tools federally approved.

Key words: economic appraisal; consequences; methodological supply; regimentation; economic effect; economic damage; ecological-economic effectiveness.

 

REFERENCES

  1. Bellezoni R. A., Sharma D., Villela A. A., Pereira Junior A. O. Water-energy-food nexus of sugarcane ethanol production in the state of Goiás, Brazil: An analysis with regional input-output matrix. Biomass and Bioenergy. 2018; 115; August: 108–119.
  2. Buevskii N. M., Zorin L. F. Revegetation of lands disturbed by mining. Donetsk: Donbass Publishing; 1969. (In Russ.)
  3. Korkin K. I., Ovchinnikov V. A. Economic effectiveness of territories reclamation disturbed by opencast mining. Gornyi zhurnal = Mining Journal. 1965; 10: 33–35. (In Russ.)
  4. Gorlov V. D. Assessment of damage connected with the disturbance of earth’s surface under opencast mining. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 1972; 3: 14–19. (In Russ.)
  5. Kirillova T. B., Ovchinnikov V. A. Economic efficiency of recultivation of the broken lands. In: Recultivation of lands broken during mineral production. Tatru: Estonian Environmental Research Institute; 1975. p. 123–129. (In Russ.)
  6. Lashgari N., Ghorbani J., Zali S. H., Vahabzadeh G. Assessment of the vegetation restoration potential on coal mine wastes (case study: Karmozd Savadkoh mines, Mazandaran Province). Journal of Environmental Studies. 2016; 41 (4): 757–770.
  7. Vitt M. B. Economic appraisal of lands dedicated for construction. Moscow: Stroiizdat Publishing; 1984. (In Russ.)
  8. Liu S. H., Liu B., Li Y. Risk factors associated with multiple correlated health outcomes in the 500 Cities Project. Preventive Medicine. 2018; 112; July: 126–129.
  9. Casey J. A., Gemmill A., Karasek D., Ogburn E. L., Goin D. E., Morello-Frosch R. Increase in fertility following coal and oil power plant retirements in California. Environmental Health: A Global Access Science Source. 2018; 17; 1. 2 May; entry number 44: 2–10
  10. Tountas Y., Georgoulis L. Natural environment and health. Archives of Hellenic Medicine. 1998; 15; 5: 482–493.
  11. Karaev V. B., Baranova V. V. On the economic damage caused by water resources contamination. Vodnye resursy = Water Resources. 1973; 3: 143–155. (In Russ.)
  12. Gofman K. G., Gusev A. A. (eds.). Environmental protection: clean environment control models. Moscow: Economica Publishing; 1977. (In Russ.)
  13. Sakhaev V. G., Shcherbinskii B. V. Environmental protection reference. Kiev: Budivelnik Publishing; 1986. (In Russ.)
  14. Lazareva I. В. Reclamation of disturbed lands for for urban constructions. Moscow: Izd-vo literatury po stroitelstvu Publishing; 1972. (In Russ.)
  15. Sorokin N. D. Industrial environmental protection. St. Petersburg: Integral Publishing; 2007. (In Russ.) Received 28 March, 2019

 

УДК 622. 7 DOI: 10.21440/0536-1028-2019-4-80-88

Morozov Iu. P., Valieva O. S., Evgrafova E. L. Improving the open circuit of flotation based on collecting agent fractional feed in the front of flotation. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 4: 80–88 (In Russ.). DOI: 10.21440/0536- 1028-2019-4-80-88

Research object and aim. Flotation schemes development and optimization is a significant trend in flotation technology improvement. The prospect of developing flotation schemes is connected with the use of open circuits which realize the conditions approaching the ideal flotation cascade. This research aims to study the possibilities of improving the effectiveness of open flotation circuits based on rational integration and flotation at certain stages of products under fractional feed of a collecting agent in the front of flotation.
Methodology. In order to obtain the regularities of forming the products of different qualities under fractional feed of a collecting agent, chamber assaying of open circuits have been carried out at two processing plants with copper ore processing. In laboratory conditions, copper ore flotation kinetics has been studied under fractional feed of a collecting agent into the process. Chamber assaying of open circuits and copper ore flotation kinetics study under fractional feed of a collecting agent into the process determined step-like formation of froth product in the front of flotation. The obtained regularities can be applied when forming open flotation circuits through reducing the blending of the products of different quality which leads to significant increase in flotation indicators.
Summary. Revealed regularities open up additional possibilities to improve flotation of sulphide ore dressing based on the use of open flotation circuits with fractional feed of a collecting agent in the front of flotation.

Key words: open flotation circuits; fractional feed of a collecting agent; flows formation; flow chart; layout solution.

 

REFERENCES

  1. Chanturiia V. A., Shadrunova I. V., Gorlova O. E. Innovative processes of deep and integrated processing of technogenic raw material in the conditions of new economic challenges. In: Effective technologies of non-ferrous, rare, and precious metals production. Proceedings of International Scientific and Production Conference. Almaty: KNRTU Publishing; 2018: 7–13. (In Russ.)
  2. Chanturiia V. A., Kozlov A. P. Modern problems of complex ore and technogenic raw material comprehensive mineral processing. In: Plaksin Readings: Proceedings of International Scientific Conference. 2017. Krasnoyarsk: Siberian Federal University Publishing; 2012: 3–6. (In Russ.)
  3. Pogorelyi A. D. On flotation characteristic of industrial pulp. Izvestiya vuzov. Tsvetnaya metallurgiya = Universitiesʹ Proceedings. Nonferrous Metallurgy. 1961; 5: 58–68. (In Russ.)
  4. Pogorelyi A. D. Calculation of flotation separation schemes. Izvestiya vuzov. Tsvetnaya metallurgiya = Universitiesʹ Proceedings. Nonferrous Metallurgy. 1958; 2: 26–32. (In Russ.)
  5. Barskii L. A., Kozin V. Z. System analysis in mineral processing. Moscow: Nedra Publishing; 1978. (In Russ.)
  6. Din-Ngog-Dang. Modeling and optimizing the process of flotation separation based on probabilistic representations. PhD (Engineering) abstract of dissertation. Moscow. 1982. 43 p.
  7. Hassanzaden A., Cagiziki S., Ozturd Z. A novel statistical insight to selection of the best flotation kinetic model. XXIX Int. min. proc. cong. IMPC. 2018. p. 67.
  8. Bocharov V. A., Ignatkina V. A. Rational technologies of non-ferrous metals complex pyrite ore flotation. In: New technologies in complex natural and technogenic mineral raw material dressing and comprehensive processing. Proceedings of International Conference “Plaksin Readings – 2011”. Ekaterinburg: Fort Dialog – Iset Publishing; 2011. p. 217–221. (In Russ.)
  9. Riguelme A., Desbiens A., del Villar R., Maldonado M. Identification of a nonlinear dynamic model of the bubble size distribution in a pilot flotation column. International Journal of Mineral Processing. 2015; 145: 7–16.
  10. Minz F. E., Bolin N.-J., Lamberg P., Bachmann K., Gutzmer J., Wanhainen Ch. Distribution of Sb minerals in the Cu and Zn flotation of Rockliden massive sulphide ore in north-central Sweden. Minerals Engineering. 2015; 82: 125–135.
  11. Zhigang H., Shujuan D. Flotation experiment research on a polymetallic sulfide ore of Cu, Pb, and Zn in Shanxi province. Journal of Chemical and Pharmaceutical Research. 2014; 6(4): 121–127.
  12. John Chadwick. Float data. International Mining. 2018; November: 12–22.
  13. Morozov Iu. P., Morozov V. V. Optimizing flotation technology with open circuits.. In: New technologies in complex natural and technogenic mineral raw material dressing and comprehensive processing. Proceedings of International Conference “Plaksin Readings–2011”. Ekaterinburg: Fort Dialog–Iset Publishing; 2011. p. 217–221. (In Russ.)
  14. Morozov Iu. P., Evgrafova E. L., Valieva O. S. Formation of froth products in open flotation circuits. In: Scientific foundation and practice of ore and technogenic material processing. Proceedings of International Scientific and Technical Conference. Ekaterinburg: Fort Dialog–Iset Publishing; 2015. p. 147–150. (In Russ.)

 

 

УДК 330.15 DOI: 10.21440/0536-1028-2019-4-89-97

 

Strovskii V. E., Komarova O. G., Logvinenko O. A. Special characteristics of sustainable development models. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 4: 89–97 DOI: 10.21440/0536-1028-2019-4-89-97

Relevance. Insufficient elaboration of methodological foundations of sustainable development concept predetermines ambiguous conceptual-categorical framework and, consequently, imperfect methodological support for the possibilities of its realization.
Research aims to develop methodological provisions for sustainable development concept as regards the determination of relationships between the types of sustainability and approaches to their realization.
Methodology. The analysis of the ways and distinctive features of sustainable development concept formation. The development of the author’s variant of systematizing the approaches to various types of sustainable development realization. Results. The article considers certain moments of sustainable development concept formation and the special characteristics of approaches to its realization in different countries, the results of the sustainable development problem discussion at international conferences and summits, the evaluation of the degree of fulfilling the goals concerning switching to a new development model. Recommendations concerning sustainability types selection are systematized, the criterion of classification is substantiated – natural capital depletion and possibility of its substitution by physical (artificial) capital. Sustainability classification with a greater detailed elaboration is considered according to R. K. Terner. The article generalizes and analyses information characterizing methodological approaches to the realization of the main provisions of sustainability development concept: anthropocentrism, eco and biocentrism, their interrelation with scenario approaches – scientistic and conservationist according to B. M. Mirkin and L. G. Naumova. The features of the approaches are revealed which are complementary to the common ones: noospheric and scenario-centrist. Author’s version is proposed for the given notions integration, relation estimation between man- nature interaction character and scenarios of human development towards the creation of sustainable development society and their attitude towards the realization of different types of sustainable development.
Results. The obtained results, improving the methodology of sustainable development, ensure the elaboration of more solid methodological approaches to the realization of a new development model.

Key words: sustainable development; international cooperation; sustainability types; methodological approaches; realization.

 

REFERENCES

  1. Bedrunka K. Concepts of the sustainable development of the region. Studies in Systems, Decision and Control. 2020; 198: 11–18.
  2. Kırlı M. S. a., Fahrioğlu M. b. Sustainable development of Turkey: Deployment of geothermal resources for carbon capture, utilization, and storage. Energy Sources. Part A: Recovery, Utilization and Environmental Effects. 2019; 41 (14): 1739–1751.
  3. Iashalova N. N. The genesis and prospects of development of the concept of sustainable development. Ekonomika prirodopolzovaniia = Economics of Sustainable Development. 2016; 2: 4–18. (In Russ.)
  4. Armand D. L. For us and for our children. Moscow: Mysl; 1964. (In Russ.)
  5. Toward a Steady – State Economy. Ed. by H. Daly. San-Franciaco: Freeman and Cotp., 1973.
  6. Daly H. E. Toward a new economic model. Bulletin of the Atomic Science; 1986. April.
  7. Kondratiev K. Ia. Problems of modern civilization sustainable development. Ekonomika prirodopolzovaniia = Economics of Sustainable Development. 2005; 12: 3–10. (In Russ.)
  8. Li J. a. b., Lin B. c. The sustainability of remarkable growth in emerging economies. Resources, Conservation and Recycling. 2019; 145: 349–358.
  9. Keong C. Y. From Stockholm declaration to millennium development goals: The united nation's journey to environmental sustainability. In: Developmental State And Millennium Development Goals. Country Experiences. 2018; April, 5: 209–256.
  10. Sokolov V. I. Towards sustainable development. USA: EPI: 1997; 9: 84–96. (In Russ.)
  11. Pisarev V. D. The USA and sustainable development strategy. USA: EPI: 1998; 3: 44–54. (In Russ.)
  12. Zarei E. a., Khosravi A. b., Motlagh M. E. c., Afshar N. E. c., Rahimi A. c., Torkestani F. c., Eslami M. c., Dormiani A. b., Khabiri R. d. e. Maternal mortality in Iran: Realization of the millennium development goals. Journal of Mazandaran University of Medical Sciences. 2017; 27 (149): 192–196.
  13. Danilov-Danilian V. I. Sustainable development – the problem of human survival. Chelovek = Man. 2003; 5: 52–57. (In Russ.)
  14. Matida Á. For a global agenda on post millennium development goals [Por uma agenda global pós-Objetivos de Desenvolvimento do Milênio]. Ciencia e Saude Coletiva. 2016; 21 (6): 1939–1945.
  15. Zhu J. The 2030 agenda for sustainable development and China’s implementation. Chinese Journal of Population Resources and Environment. 2017; 15 (2): 142–146.
  16. Ignatieva M. N., Kosolapov O. V. Essence of the concept “sustainable development”. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2014; 2: 21–24. (In Russ.)
  17. Glazyrina I. P. Natural capital in transition economy. Moscow: NIA–Priroda Publishing; REFIA; 2001. (In Russ.)
  18. Bobylev S. N. Environmental economics. Moscow: INFRA-M Publishing; 2014. (In Russ.)
  19. Turner R. K. Sustainability: principles and practice. Sustainable Environmental Economics and Management: Principies and Practice. Chichesster: Wiley; 1993: 3–36.
  20. Mirkin B. M., Naumova L. G. Course of lectures on sustainable development. Moscow: Taideks Ко Publishing; 2005. (In Russ.)
  21. Lukianchikov N. N., Potravnyi I. M. Economics and management of natural resources. Moscow: IuNITI-DANA Pubishing; 2007. (In Russ.)
  22. Akimova T. A., Khaskin V. V. Ecology. Moscow: IuNITA-DANA Publishing; 2006. (In Russ.) Received 28 March, 2019

 

УДК 622.7  DOI: 10.21440/0536-1028-2019-4-71-79

 

Tsypin E. F., Popova E. V., Efremova T. A. The influence of X-ray radiometric separation on the technological parameters of extra-balance zinc ore deep dressing. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 4: 71–79 (In Russ.). DOI: 10.21440/0536-1028-2019-4-71-79

Introduction. At a recent time, ore of complex chemical and mineralogical composition, including extrabalance ore, get involved into ore processing. Low assay is common with extra-balance ore. X-ray radiometric method is one perspective way of improving the quality of raw material. Research aim is to study the influence of preliminary dressing with the X-ray radiometric method on the technological parameters of extra-balance zinc ore flotation.
Methodology. The research has been carried out with the use of extra-balance zinc ore with the size of –50+0 mm. Unsortable grain-size class and one jigging class +30 mm have been selected from the initial ore. Jigging class is separated at an X-ray radiometric separator to get the concentrate of X-ray radiometric separation (XRRS) and XRRS tailings. By mixing XRRS concentrate in the given proportion and the contents of the unsortable class 80, 60, 30%, combined products are formed being the products of flotation feed. Flotation of the given products has been carried out to get the rough concentrate and flotation tailings. Technological parameters have been calculated.
Summary. Combined application of X-ray radiometric separation and flotation of extra-balance zinc ore allows significantly improving technological parameters and reconsider approaches to the technology of the given ore dressing.

Key words: preliminary concentration; flotation; X-ray radiometric separation; extra-balance zinc ore; technological parameters; preliminary dressing.

 

REFERENCES

  1. 1. Tsypin E. F. Dressing in the stages of ore preparation: scientific monograph. Ekaterinburg: UrSMU Publishing; 2015. (In Russ.)
  2. Bocharov V. A., Ignatkina V. A. Technology of mineral processing. Vol. 1. Moscow: Ruda i metally Publishing; 2007. (In Russ.)
  3. Härkki K. Overcoming sustainability challenges of future concentrator plants. In: Proceedings of the XXVII International Mineral Processing Congress. Santiago, Chile: Gecamin, 2014. Chap. 1.
  4. Moore P. Processing performance. International Mining. 2018. January. P. 66–73.
  5. Maksimov I. I. XXVII International Mineral Processing Congress. Part 1. Obogashchenie Rud = Mineral Processing. 2015; 3: 3–11. DOI: 10.17580/or.2015.03.01 (In Russ.)
  6. Maksimov I. I., Baranov V. F., Bogdanovich A. V., Kibirev V. I. XXVII International Mineral Processing Congress. Part 2. Obogashchenie Rud = Mineral Processing. 2015; 6: 50–58. DOI: 10.17580/or.2015.06.10 (In Russ.)
  7. Tsypin E. F. Information and enrichment process. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2012; 1: 86–92. (In Russ.)
  8. Kolacz J. Sensor based sorting with signal pattern recognition: The new powerful tool in mineral processing. In: Proceedings of the XXVII International Mineral Processing Congress. Santiago, Chile: Gecamin, 2014. Chap. 16. P. 106– 115.
  9. Fedorov Iu. O., Katser I. U., Korenev O. V., Korotkevich V. A., Tsoi V. P., Kovalev P. I., Fedorov M. Iu., Popovskii N. S. Experience and practice of X-ray radiometric ore separation. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2005; 5: 21–37. (In Russ.)
  10. Tsypin E. F., Ovchinnikova T. Iu., Efremova T. A., Pestov V. V. Development of flow sheets for preconcentration of multi-component complex ores. Obogashchenie Rud = Mineral Processing. 2016; 5: 8–13. DOI: 10.17580/or.2016.05.02 (In Russ.)
  11. Pestov V. V. The development and use of methodical software X-ray florescent separation of mineral and technogenic raw materials. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2011; 8: 111–117. (In Russ.)

 

Language

E-mail

This email address is being protected from spambots. You need JavaScript enabled to view it.

Мы индексируемся в: