2019-6-8

DOI: 10.21440/0536-1028-2019-6-70-80

Prokopiev S. A., Pelevin A. E., Prokopiev E. S., Ivanova K. K. Increasing the integrity of iron-ore raw material use with the help of screw separation. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 6: 70–80 (In Russ.). DOI: 10.21440/0536-1028-2019-6-70-80

Research aims to assess the possibility of using screw separation to increase the integrity of iron-ore raw material utilization by means of obtaining additional concentrate from mill tailings in weak magnetic field of magnetite ore.
Research methodology. Experiments have been carried out in laboratory and semi-industrial conditions with the use of screw slime separators. Source products were the mill tailings in weak magnetic field of hematite-magnetite quartzites, magnetite and titanium magnetite ore.
Research results. In semi-industrial conditions, the possibility has been shown of obtaining the hematite concentrate with 63–66% mass shares of iron ore and 4.6–8.0% silicon dioxide from hematite-magnetite tailings. The output of concentrate to mill tailings is 10–14%. Laboratory research on the application of screw separation and table concentration haven’t allowed obtaining iron or other concentrates from magnetite and titanium magnetite ore tailings. Gravitational dressing of complex magnetite ore tailings has revealed increased content of copper and zinc sulfides in heavy product.
Summary. The use of screw separation in hematite-magnetite quartzites dressing makes it possible to increase the integrity of iron-ore raw material application by means of obtaining hematite concentrate. The use of screw separation should be accepted inadvisable to reduce the loss of iron ore with tailings in skarn magnetite and titanium magnetite ore dressing. Screw separation can be used as a method of complex skarn magnetite ore preliminary dressing to obtain semi-products containing nonferrous metal minerals.
Key words: integrity of raw material utilization; iron ore; mill tailings; screw separation; screw slime separation; hematite concentrate; mass share of iron.


REFERENCES

1. Bogdanov O. S. (ed.) Reference book on ore dressing. Dressing mills. 2nd edition. Moscow: Nedra Publishing; 1984. (In Russ.)
2. Karmazin V. I., Karmazin V. V. Magnetic and electrical methods of mineral dressing. Vol. 1. In: Magnetic, electrical, and special methods of mineral dressing. In 2 volumes. Moscow: Gornaya kniga Publishing; 2012. (In Russ.)
3. Pelevin A. E. Magnetic and electrical dressing methods. Ekaterinburg: UrSMU Publishing; 2018. (In Russ.)
4. Arantes R. S., Lima R. M. F. Influence of sodium silicate modulus on iron ore flotation with sodium oleate. International Journal of Mineral Processing. 2013; 125: 157–160.
5. Wanzhong Yin, Jizhen Wang, Longhua Xu. N. Reagents in the reverse flotation of carbonate-containing iron ores. Proceedings of the 11th International Congress for Applied Mineralogy. 2015; Part of the series Springer Geochemistry/Mineralogy: 459–470.
6. Continuous improvement in SAG mill liner design using new technologies / E. Collinao, P. Davila, R. Irarrazabal, R. de Carvalho, M. Tavares. In: XXVII International Mineral Processing Congress (IMPC). Santiago, Chile, 2014. Сhap. 8. Р. 104–118.
7. Rosa A. C., de Oliveira P. S., Donda J. D. Comparing ball and vertical mills performance: An industrial case study. In: XXVII IMPC. Santiago, Chile, 2014. Сhap. 8. Р. 44–52.
8. Jankovic A., Valery W., Sönmez B., Oliveira R. Effect of circulating load and classification efficiency on HPGR and ball mill capacity. In: XXVII IMPC. Santiago, Chile, 2014. Сhap. 9. Р. 2–14.
9. Prokopiev S. A., Pelevin A. E., Napolskikh S. A., Gelbing R. A. Staged screw separation of magnetite concentrate. Obogashchenie Rud = Mineral Processing. 2018; 4: 28–33. DOI: 10.17580/or.2018.04.06. (In Russ.)
10. Prabal Kumar Agrwal, Sanket Bacchuwar, Rao G. V., Sharma S. K. Оptimisation of process parameters of spiral concentrator for beneficiation of iron ore stacked slimes from Kirandul, Chattisgarh, India. In: XXVIII IMPC Proceedings. Quebec, Canada, 2016. Paper ID: 627.
11. Sadeghi M., Bazin C., Hodouin D., Devin P.-O., Lavoie F., Renaud M. Control of spiral concentrators for the concentration of iron ore. In: XXVIII IMPC Proceedings. Quebec, Canada, 2016. Paper ID: 792.
12. Prokopev S. A., Pelevin A. E., Morozov Iu. P. Some features of mass transfer at spiral. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2018;
7: 67–74. (In Russ.)
13. Auret L., Haasbroek A., Holtzhausen P. and Lindner B. Оnline concentrat band position detection for a spiral concentrator using a Raspberry Pi. In: XXVII IMPC. Santiago, Chile, 2014. Сhap. 17. Р. 83–92.
14. Оbservation of wash water effect on particle motion in a spiral concentrator by positron emission particle tracking / Darryel Boucher, Joshua Sovechles, Zhoutong Deng, Raymond Langlois, Thomas W. Leadbeater. In: XXVIII IMPC Proceedings. Quebec, Canada, 2016. Paper ID: 436.

Received 22 May 2019

 

Language

E-mail

This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 

счетчик посещений