УДК 622.831.32:681.5.08 DOI: 10.21440/0536-1028-2019-4-24-32


Konstantinov A. V., Gladyr A. V. Designing universal measuring and analytical platform to investigate the state of rock massif. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 4: 24–32 (In Russ.). DOI: 10.21440/0536-1028-2019-4-24-32

Introduction. At the present time, the development of geoacoustic signalling safety systems becomes more relevant due to larger production units at mines and higher speed of mining. Such systems include instruments for rockburst hazard assessment based on computer appliance with the use of geoacoustic methods.
Research aim is to develop a range of characteristics of the existing equipment for local monitoring of rockburst hazard Prognoz L. The approach considered in the work should allow locating the sources of acoustic emission, provide wider range of working frequencies, and enlarge marginal massif control zone. As an additional advantage, it is suggested to increase comfort of use while interacting with the graphical user interface providing many additional features.
Methodology. The present research considers design solutions over the creation of universal measuring and analytical platform for rock mass investigation. The device under consideration is introduced as a substitution for the well-proven Prognoz L local control device, inheriting and enlarging its functions. New platform creation is conditioned by a number of limitations of an original device built on the basis of a microconroller from the STM32 family using a processor core with ARM architecture.
Results. The considered approach to the design of a rockburst hazard local control device, structural, hardware, and software parts are distinguished, each of them being independent and able to be improved with no need to change other parts.
Conclusions. The use of this approach will allow to define the sources of acoustic emission, increase the effectiveness of measurements reducing the laboriousness of the process of developing and introducing new techniques.

Key words: rock massif; rockburst hazard; local control; acoustic emission; event location; geomechanical monitoring.



1. Rasskazov I. Iu. Rock pressure monitor and control at Far East mines. Moscow: Gornaia kniga Publishing; 2008. (In Russ.)
2. Rasskazov I. Iu., Saksin B. G., Petrov V. A., Prosekin B. A. Geomechanics and seismicity of the antey deposit rock mass. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2012; 3: 3–13. (In Russ.)
3. Cheban A. Iu. Improving equipment and technology of blastless rock development: monograph. Khabarovsk: IM FEB RAS Publishing; 2017. (In Russ.)
4. Cheban A. Iu. Method of developing deep-career with application of milling machines. Marksheideriia i nedropolzovanie = Mine Surveying and Subsurface Use. 2017; 4: 23–29. (In Russ.)
5. Gladyr A. V. Integration of microseismic and geoacoustic data of geomechanical monitoring. Gornyi informatsionno-analiticheskii biulleten (nauchno-tekhnicheskii zhurnal) = Mining Informational and Analytical Bulletin (scientific and technical journal). 2017; 6: 220–234. (In Russ.)
6. Shemiakin V. V., Strizhkov S. A. Aspects of applying the method of acoustic emission to monitor hazardous industrial facilities. Obshchie voprosy khimicheskoi tekhnologii = General Issues of Chemical Engineering. 2005; 7: 23–26. (In Russ.)
7. Baranov S. V. Automatic detection of seismic event duration in real time: collected works. Moscow; 2004; 3. (In Russ.)
8. Krasovskii A. A. Digital processing in zetlab with seismic signal parameter identification. Tsifrovaia obrabotka signalov = Digital Signal Processing. 3; 70–76. (In Russ.)
9. Tereshkin A. A., Migunov D. S., Anikin P. A., Gladyr A. V., Rasskazov M. I. Evaluation geo-mechanical dangerous rock mass state according to local control geoacoustic data. Problemy nedropolzovaniia = The Problems of Subsoil Use. 2017; 1 (12): 72–80. (In Russ.)
10. Rozanov A. O., Tsirel S. V. Developing the approach to solve the dynamic task on the development of the seat of disturbance with the use of seismoacoustic monitoring data: Proceedings of 6th All-Russian conference with foreign scientists. Khabarovsk. 2017; 74–80. (In Russ.)
11. Rozanov A. O., Zang A., Wagner C., Dresen G. Acoustic Frequency Signatures of Laboratory Fractured Rocks. 63rd Conference, European Association of Geoscientists and Engineers, Extended Abstracts, paper P036, 2001. 1
2. Reches Z., Lockner D. A. Nucleation and growth of faults in brittle rocks. J. Geophys Res. 1994; 99: 18,159–18,174.
13. Backers T., Stephansson O., Rybacki E. Fractography of rock from the new Punch-Through Shear Test. In: International Conference on Structural Integrity and Fracture (Perth, Australia). 2002; 39: 755.
14. Rozanov A. O. Microseismic Event Spectrum Control and Strain Energy Release in Stressed Rocks. GEO 2012 10th Middle East Geosciences Conference & Exhibition. 2012; 40897.
15. Backers T., Stanchits S., Dresen G. Tensile fracture propagation and acoustic emission activity in sandstone: The effect of loading rate. International Journal of Rock Mechanics and Mining Sciences. 2005; 42 (7–8): 1094–1101.
16. Rozanov A. O. Ultrasonic conductivity increase as a precursor of fracture process in rocks. 75th EAGE Conference and Exhibition Incorporating Spe Europec. 2013; 17671: 6276–6280.
17. Rasskazov I. Iu., Migunov D. S., Anikin P. A., Gladyr A. V., Tereshkin A. A., Zhelnin D. O. New-generation portable geoacoustic instrument for rockburst hazard assessment. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2015; 3: 169–179. (In Russ.)

Received 13 February, 2019




This email address is being protected from spambots. You need JavaScript enabled to view it.



счетчик посещений