|
|
ISSN 0536-1028 (Print) ISSN 2686-9853 (Online) |
Tsypin E. F., Ovchinnikova T. Iu., Efremova T. A., Elizarov D. B. Technological aspects of ore preconcentration with X-ray fluorescence separation. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 7: 101–112. DOI: 10.21440/0536-1028- 2019-7-101-112
Object and aim of research. By eliminating coarse tailings, preconcentration may increase the content of valuable components in ore at the input of the processing plant with or without throughput reduction. The output of preconcentration tailings therefore determines the reduction level of operating costs. Technological and economic benefit may be significant with high prime cost of deep processing; it is connected with the costs of power-consuming processes of crushing, grinding, dewatering, as well as for reagents and material.
Research aims to study main technological factors which influence the effectiveness of ore preconcentration with X-ray fluorescence separation.
Methodology. The present research uses technological calculation of preconcentration with X-ray fluorescence separation (XRFS) at various granulometric characteristics of Run-of-Mine Ore and crushed ore, inhomogeneity analysis of components content in a lump with material size variation, experimental research on the study of sorted classes number influence on the indicators of separation with the use of XRFS in preconcentration technologies.
Results and the scope of results. Technological indicators of preconcentration with X-ray fluorescence separation are calculated for various granulometric characteristics of ore which comes to concentration. The obtained data allow to recommend XRFS in maximum size. The influence is revealed of the number of the sorted sorted classes on the total yield of preconcentration tailings. Maximum size of the concentrated material should be taken into account when choosing the number of sorted classes. Research results may be applied when developing the technologies of mineral raw material preconcentration with X-ray fluorescence separation.
Summary. The effectiveness of ore separating system operation is largely determined by the quality of ore preparation by granulometric composition both at actual mining (drilling and blasting operations) and crushing-screening at ore separating systems. The proposed approach allows to quantitatively estimate the influence of the number of sorted classes on the effectiveness of preconcentration with X-ray fluorescence separation and explain the choice of the number and the boundaries of sorted classes sizes.
Key words: preconcentration; X-ray fluorescence separation; ore sorting system; technology; inhomogeneity in a lump; granulometric characteristics; the number of the sorted classes.
REFERENCES
Received 4 July 2019
Teliman I. V. Rationale for pit hydraulic excavator design and operating parameters-lever hydraulic mechanisms. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 7: 132–137 (In Russ.). DOI: 10.21440/0536-1028-2019-7-132-137
Introduction. It is shown that the main executive mechanisms of the pit hydraulic excavator (mechanisms for turning the boom, turning the handle and turning the bucket) are hydro-mechanical units in which the engines (hydraulic cylinders) are an integral part of the lever-hydraulic mechanisms. Research aim is to improve the efficiency of hydraulic excavator operation. Research methodology. The presence of a kinematic connection between the engine (hydraulic cylinder rod) and the links of the lever-hydraulic mechanism determines certain relations between the parameters of the engine and the power parameters implemented on the driven link (boom, handle and bucket) – kinematic and dynamic transfer functions. On the basis of the main mechanisms functioning simulation model, expressions for definition of transfer functions are received. Results. It is established that there are rational values of the dynamic transfer functions of the main mechanisms at which the correspondence between the energy-power parameters realized at the driven links and the mode of loading of the driven links is achieved. Summary. Synthesis of design schemes of the main mechanisms with rational values of dynamic transfer functions will allow to exclude an overload of engines and, finally, to increase energy efficiency of hydraulic excavator functioning.
Key words: quarry hydraulic excavator; main executive mechanisms; kinematic and dynamic transfer functions of mechanisms.
REFERENCES
1. Borshch-Komponiets L. V. The method of pit hydraulic excavators efficient assessment. Gornaia promyshlennost = Mining Industry Journal. 1996; 1: 29–37. (In Russ.) 2. Vinitskii K. E. The exploitation of new-generation hydraulic excavators at opencast mining. Gornaia promyshlennost = Mining Industry Journal. 1998; 1: 30–36. (In Russ.) 3. Komissarov A. P., Lautenshleiger A. A., Suslov N. M. Estimation of hydraulic excavator implements power parameters. Tiazheloe mashinostroenie = Heavy Engineering. 1991; 8: 25–29. (In Russ.) 4. Bules P. Operating efficiency of pit excavators with hydraulic drive of main mechanisms. Gornaia promyshlennost = Mining Industry Journal. 2014; 6 (118): 36–37. (In Russ.) 5. Visbek R., Kazakov V. A., Udachina T. E., Khaspekov P. R. On the effective use of hydraulic excavators. Gornaia promyshlennost = Mining Industry Journal. 1998; 5: 25–29. (In Russ.) 6. Dudczak A. Excavators: theory and design. Warsaw: PWN, 2000. 7. Geu Flores F., Kecskemethy A., Pottker A. Workspace analysis and maximal force calculation of a face-shovel excavator using kinematical transformers. In: 12th IFToMM World Congress, Besancon, June 18–21, 2007. 6 p. 8. Frimpong S., Нu Y., Chang Z. Perfomance simulation of shovel excavators for earthmoving operations. In: Summer in computer simulation conference (SCSC/03). 2003. Р. 133–138. 9. Hall A. Characterizing the operation of a large hydraulic excavator. Master Diss. School of Engineering the University of Queensland, Brisbane, Australia, 2002. 150 p. 10. Park B. Development of a virtual reality excavator simulator: a mathematical model of excavator digging and a calculation methodology. PhD Diss. Virginia Polytechnic Institute and State University. Blackburg, Virginia, USA, 2002. 223 p. 11. Rath H. Development of Hydraulic for Quarring Applications. Pt. 1. Mine & Quarry. 1987. P. 26–30. 12. Komissarov A. P., Shestakov V. S. A simulation model operation working equipment hydraulic shovel. Gornoe oborudovanie i electromehanika = Mining Equipment and Electromechanics. 2013; 8: 20–24. (In Russ.) 13. Komissarov A. P., Lagunova Iu. A., Shestakov V. S. Between constructive and regime parameters hydraulic operating equipment excavators. Gornoe oborudovanie i electromekhanika = Mining Equipment and Electromechanics. 2014; 11: 9–14. (In Russ.) 14. Pobegailo P. A. Powerful single-bucket hydraulic excavators. Implements basic geometric parameters selection at the early stages of design. Moscow: Lenand Publishing; 2014. (In Russ.) Received 12 April 2019
Cherdantsev N. V. Framing the solution to the problem of coal seam state by the methods of the mechanics of granular materials. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 7: 68–76. DOI: 10.21440/0536-1028-2019-7-68-76
Introduction. It is essential to reliably estimate the geomechanical state of marginal zones at a mineable coal seam in order to ensure mining balance and safety. Research aim is to build the model of the state of a coal seam in its marginal zone based on the fundamental methods of the mechanics of granular materials, make calculations within the framework of the model, analyze the results and compare them with the results obtained by the well-known methods.
Methodology. The problem of the stressed state of coal seam marginal zones is implemented by means of numerical solution of three boundary value problems of limit equilibrium theory for a range of typical areas situated in these zones. The criterion of limit state beginning is concurrent compliance with Coulomb–Mohr stratum condition and Mohr–Kuznetsov condition along the contact with rock wall.
Results. It has been shown that the components of stress field change non-monotonically along the seam roof. Sections with constant stresses are changed by sections with stresses nonlinear increase. With distance from the marginal part into the depth of the massif, the size of sections with constant stresses decreases. The obtained stress results have been compared with the results obtained with the use of voltage change exponential formula. The dimensions of seam marginal zone have been determined with rather close results of two approaches.
Summary. Polynomial approximation of the obtained graphs allows accurately replace the results of numerical solution to the limit state problem by analytical functions and simplify the solution to the problem of the enclosing rock stressed state.
Key words: rock mass; coal seam; mine; limit stress seam zones; Coulomb–Mohr and Mohr– Kuznetsov strength criteria.
REFERENCES
1. Petukhov I. M., Linkov A. M. The mechanics of rockbursts and outbursts. Moscow: Nedra Publishing; 1983. (In Russ.)
2. Chernov O. I., Puzyrev V. N. The forecast of coal and gas outbursts. Moscow: Nedra Publishing; 1979. (In Russ.)
3. Zhang C., Canbulat I., Tahmasebinia F., Hebblewhite B. Assessment of energy release mechanisms contributing to coal burst. Int. J. Rock Min. Sci. Technol. 2017; 27: 3–7.
4. Shadrin A. V. Static and dynamic outburst hazard of coal seams. Bezopasnost truda v promyshlennosti = Occupational Safety in Industry. 2018; 4: 42–48. (In Russ.)
5. Fisenko G. L. Limit state of rock around mine workings. Moscow: Nedra Publishing; 1976. (In Russ.)
6. Napier J. A. L., Malan D. Simulation of tabular mine face advance rates using a simplified fracture zone model. Int. J. Rock Mech. Min. Sci. 2018; 109: 105–114.
7. Guo H., Yuan L. An integrated approach to study of strata behaviour and gas flow dynamics and its application. International Journal of Coal Science & Technology. 2015; 2 (1): 12–21.
8. Guo W., Xu F. Numerical simulation of overburden and surface movements for Wongawilli strip pillar mining. Int. J. Min. Sci. Technol. 2016; 26: 71–76.
9. Khristianovich S. A. Continuum mechanics. Moscow: Nauka Publishing; 1981. (In Russ.)
10. Ruppeneit K. V. Some issues of rock mechanics. Moscow: Ugletekhizdat; 1954. (In Russ.)
11. Gao W. Study on the width of the non-elastic zone in inclined coal pillar for strip mining. Int. J. Rock Mech. Min. Sci. 2014; 72: 304–310.
12. Sokolovskii V. V. Granular materials statics. Moscow: Nauka Publishing; 1990. 272 с.
13. Cherdantsev N. V., Cherdantsev S. V. The analysis of the state of a coal mass with an in-seam working and fracture. Izvestiia RAN. Mekhanika tverdogo tela = Mechanics of Solids. 2018; 2: 110–121. (In Russ.)
14. Cherdantsev N. V. Solution to the problem of soil rock layer heaving in the in-coal working. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2016; 8: 32–39. (In Russ.)
15. Cherdantsev N. V. Solving a problem on ejection of a dirt seam from the coal seam floor in the in-seam working. Gornyi informatsionno-analiticheskii biulleten (nauchno-tekhnicheskii zhurnal) = Mining Informational and Analytical Bulletin (scientific and technical journal). 2017; 5: 369–381. (In Russ.)
16. Klishin V. I., Klishin S. V. Mineral mining technology: Coal extraction from thick flat and steep seams. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2010; 2: 69–81. (In Russ.)
Received 16 May 2019
Volkov E. P., Anushenkov A. N. Developing the technology of mine stowing with processing tailings based hardening blends. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 7: 5–13. DOI: 10.21440/0536-1028-2019-7-5-13
Introduction. Large-scale implementation of mine stowing method is a relevant tendency to improve the technology of underground mining.
Research aims to develop and propose an effective technology of mine stowing with processing tailings based hardening blends.
Research methods include experimental investigation of mine stowing technology with processing tailing based hardening blends and the determination of basic characteristics of an artificial massif.
Analysis. The present work provides the results of research on conventional technologies of hardening blends preparations and the one developed by the authors; the results prove the effectiveness of hydropercussion-cavity activation of solution materials.
Summary. The analysis of the stowing manufacturing technologies under investigation has shown the effectiveness of the developed method based on the hydropercussion-cavity treatment of hardening blends materials.
Key words: underground mining; stowing; hardening blends; processing tailings; hydropercussioncavity blending machine
REFERENCES
1. Bitimbaev M. Zh., Krupnik L. A., Shaposhnik Iu. N. Theory and practice of stowing when developing mineral deposits. Almaty: Dauir Publishing; 2012. (In Russ.)
2. Krupnik L. A., Shaposhnik Iu. N., Shaposhnik S. N., Tursunbaeva A. K. Technology of stowing at mining enterprises of Kazakhstan. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2013; 1: 95–105. (In Russ.)
3. Chen G. Y. and Huang W. H. Investigation on blending CFB ash with blast furnace slag as replacement for Portland cement used in concrete binders. Adv. Mater. Res. 2013; 723: 623–629.
4. Kroupnik L., Abdykalykova R., Elemesov K., Sładkowski A., Shaposhnik Yu., Shaposhnik S. Combined pipeline transport for hardening filling Mixtures. VIII Int. Conf. "Transport Problems". Сatowice, Poland, 2016. Р. 258–265.
5. Deng D. Q., Liu L., Yao Z. L., Song K. I., and Lao D. Z. A practice of ultra-fine tailings disposal as filling material in a gold mine. J. Environ. Manage. 2017; 196: 100–109.
6. Hu S. G., Lu X. J., Niu H. L. and Jin Z. Q. Research on preparation and properties of backfilling cementation material based on blast furnace slag. Adv. Mater. Res. 2011; 158: 189–196.
7. Krupnik L. A., Shaposhnik Iu. N., Shaposhnik S. N. The development of backfilling technology in terms of Novo-Leninogorsky mine planning. Gornyi informatsionno-analiticheskii biulleten (nauchnotekhnicheskii zhurnal) = Mining Informational and Analytical Bulletin (scientific and technical journal). 2015; 8: 25–32. (In Russ.)
8. Ke X., Zhou X., Wang X., Wang T., Hou H., and Zhou M. Effect of tailings fineness on the pore structure development of cemented paste backfill. Constr. Build. Mater. 2016; 126: 345–350.
9. Grebenkin S. S., Melnik V. V. Advanced technologies of underground mining of mineral deposits reserves with goaf stowing. Donetsk: VIK Publishing; 2013. (In Russ.)
10. Nikolaev E. I., Gultiaev V. G., Kozhbanov K. Kh. New technology of preparing hardening blend at Orlovsky mine. Gornyi zhurnal = Mining Journal. 2002; 5: 58–60. (In Russ.)
11. Krupnik L. A., Shaposhnik Iu. N., Shaposhnik S. N. The prospects of stowing transportation to the shaft at mining enterprises in Kazakhstan. Gornoe oborudovanie i elektromekhanika = Mining Equipment and Electromechanics. 2015; 4: 21–28. (In Russ.)
12. Volkov E. P., Anushenkov A. N., Guzanov P. S., Lytneva A. E. Stowing solutions based on ore processing gangue in the systems of Norilsk industrial region deposits underground mining systems. Gornyi zhurnal = Mining Journal. 2015; 6: 85–87. (In Russ.)
13. Balabyshko A. M. Rotor devices with flow modulation and their application in the industry. Moscow: Nedra Publishing; 1992. (In Russ.)
14. Volkov E. P., Stovmanenko A. Iu., Anushenkov A. N. Mixing-activating device for liquid media. Patent RF no. 2550609; 2015.
15. Anushenkov A. N., Volkov E. P., Stovmanenko A. Iu. A method of preparing cast hardening stowing blends based on the finely-dispersed filler. Patent RF no. 2607329; 2017.
Received 2 July 2019
Malinovskii E. G., Akhpashev B. A., Golovanov A. I., Gildeev A. M. Comparing the results of physical modeling and full-scale experiment on ore face draw in the system of block caving for fat deposits. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 7: 34–44 (In Russ.). DOI: 10.21440/0536-1028-2019-7-34-44
Introduction. The task of ore and host rock caving method efective parameters determination in the
conditions of thick fat deposits is by no means trivial due to a lack of adequate international and local
experience. Optimal parameters of ore draw are therefore best determined based on physical and
mathematical modeling, taking into account the data of full-scale experiments.
Research aim. Based on physical and mathematical modeling and full-scale experiment data, the present
research aims to identify the patterns of rock mass draw in the context of particular mining and geological
conditions of a deposit. Using the obtained data on discharge fgures formation kinematics, the research
aims to determine the medium fowability indicators required to create a mathematical model of ore draw
in similar conditions.
Research methodology includes physical modeling of the ore face draw with of the medium extraction and
fowability indicators determination.
Results. Comparison of full-scale experiments results with physical modeling results revealed sufcient
convergence in the areas of losses and dilution, in the similarity of broken rock draw patterns, in the draw
fgure formation. Base on physical modeling, the dependence between the medium fowability indicator
and the discharge fgure height required to mathematically simulate the draw.
Summary. The medium fowability characteristics, defned during physical modeling and full-scale
experiments and incorporated in the mathematical model of draw, will allow to optimize the parameters of
the development systems with ore and host rocks caving at thick fat deposits.
Key words: fat deposits; system of development; block-caving; face draw; physical modeling; full-scale
experiment.
REFERENCES
1. Imenitov V. R., Kovalev I. A., Uralov V. S. Modeling ore caving and discharge. Moscow:
MSU Publishing; 1961. (In Russ.)
2. Malakhov G. M., Bezukh R. V., Petrenko P. D. Theory and practice of ore discharge. Moscow:
Nedra Publishing; 1968. (In Russ.)
3. Kulikov V. V. Ore discharge. Moscow: Nedra Publishing; 1980. (In Russ.)
4. Kabelko S. G., Dunaev V. A., Gerasimov A. V. Computer technology of forecast evaluation of ore
drawing indicators at the development of deposits by systems with ore and rock caving. Izvestiya vysshikh
uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2014; 8: 54–61.
(In Russ.)
5. Bashkov V. I. Parameters analysis and design of the variant of sublevel caving development with
face draw of the ore. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the
Kuzbass State Technical University. 2015; 2 (108): 75–78. (In Russ.)
6. Savich I. N., Mustafn V. I. Perspectives of use and rationale design solutions of block (level) and
sublevel face draw. Gornyi informatsionno-analiticheskii biulleten (nauchno-tekhnicheskii zhurnal) =
Mining Informational and Analytical Bulletin (scientifc and technical journal). 2015; S1: 419–429.
(In Russ.)
7. Golik V. I., Belodedov A. A., Logachev A. V., Shurygin D. N. Improvement of parameters of
production of ores at the subfoor collapse with face release. Izvestiia Tulskogo gosudarstvennogo
universiteta. Nauki o zemle = Proceedings of the Tula State University. Earth Sciences. 2018; 1: 150–159.
(In Russ.)
8. Ermakova I. A. Setting of fow parameters during release of ore in caving systems. Tekhnika i
tekhnologiia gornogo dela = Journal of Mining and Geotechnical Engineering. 2018; 1: 4–11. (In Russ.)
9. Kvapil R. Gravity fow of granular material in hoppers and bins. Part 1. International Journal of
Rock Mechanics and Mining Sciences. 1965; 2: 35–41.
10. Marano G. The interaction between adjoining draw points in free fowing materials and its
application to mining. Chamber of Mines Journal. Zimbabwe. 1980; 25–32.
11. Laubscher D. H. Cave mining – the state of the art. The Journal of the South African Institute of
Mining and Metallurgy. 1994; 94 (10): 279–293.
12. Rustan A. Gravity fow of broken rock – what is known and unknown. In: Proceedings MassMin
2000, Brisbane. P. 557–567. Ed. G. Chitombo. The AusIMM, Melbourne. 2000.
13. Power G. R. Modeling granular fow in caving mines: large scale physical modeling and full scale
experiments. PhD thesis. The University of Queensland, Brisbane. 2004.
14. Malofeev D. E. Developing the theory of ore draw under the caved rock: monograph. Krasnoyarsk:
SFU Publishing; 2007. (In Russ.)
This work is licensed under a Creative Commons Attribution 4.0 International License.