ISSN 0536-1028 (Print)              ISSN 2686-9853 (Online)  

Skokov V. V. – Gazprom dobycha Astrakhan LLC, Astrakhan, the Russian Federation. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Problems which arise in the process of wells construction at Astrakhan gas condensate field (GCF) caused by brine
manifestation are the most intractable. The majority of the problems (up to 70%), caused by brine manifestation is
detected within the interval of 2800–3800 m in wells situated at the slopes of salt domes, the minority is detected in the
wells staked at the vaults and troughs. Factors which define the choice of strategy against brine manifestation at gas wells
construction are the genesis of brines and lithological confinedness of their bedding in the depth of chemogenic rock
assemblage of a mine. The article introduces the conditions of brines formation, their chemical composition (in conditions
of Astrakhan GCF) along with the factors which contribute to brines redistribution within inter-salt beds. With the account
of the experience of wells construction at Astrakhan GCF in conditions of brine manifestation the variants of the said
problem elimination are examined.
Key words: wells swabbing; sediment brine; leaching brine; mineralization; abnormally high formation pressure;
intercrystalline gas-liquid impurities; salt dome structure.
1. Valiashko M. G. Geokhimicheskie zakonomernosti formirovaniia mestorozhdenii kaliinykh solei [Geochemical
regularities of potassium salt deposits formation]. Moscow, Izd-vo MSU Publ., 1962. 398 p.
2. Valiashko M. G. [Main problems of geochemistry of natural waters and works of MSU laboratory of experimental
geochemistry]. Zakonomernosti formirovaniia khimicheskogo sostava prirodnykh vod [Regularities of natural waters
chemical composition formation]. Moscow, Izd-vo MSU Publ., 1981, pp. 4–31.
3. Valiashko M. G., Zherebtsova I. K., Sadykov L. Z. Geokhimicheskie metody poiskov mestorozhdenii kaliinykh solei
[Geochemical methods of potassium salts deposits prospecting]. Moscow, Izd-vo MSU Publ., 1966. 73 p.
4. Ushivtseva L. F. [Chemical composition and physical and mechanical properties of Kungur saline formation rocks of
Astrakhan uplift]. Iuzhno-Rossiiskii vestnik geologii, geografii i global'noi energii – South Russian Bulletin of Geology,
Geography, and Global Energy, 2003, no. 4–5, pp. 17–22. (In Russ.)
5. Ushivtseva L. F. [Brines of Kungur salt-bearing section]. Tr. SevKavNIIgaz. Geologiia, burenie i razrabotka gazovykh
i gazokondensatnykh mestorozhdenii – Proceedings of SevEKvNIPIGas. Geology, Drilling and Gas and Gas Condensate
Fields Exploitation, 2003, issue 38, pp. 13–15.
6. Oshakpaev T. A. [Internal salt tectonics and physical foundations of salt tectonics]. Tektonika i neftegazonosnost'
soliano-kupol'nykh oblastei SSSR [Tectonics and oil and gas content of salt dome regions of the USSR]. Alma-Ata,
1973, pp. 75–77.
7. Svintsitskii S. B., Chernukhin V. I., Solnyshkin D. G., Sukharev G. P. [Registration of structural and tectonic factor
and saline rocks density when estimating the condition of a well’s shaft]. Stroitel'stvo neftianykh i gazovykh skvazhin na
sushe i na more – The Construction of Oil and Gas Wells by Land and by Sea, 2004, no. 4, pp. 5–9. (In Russ.)
8. Khain V. E., Lomize M. T. Geotektonika s osnovami geodinamiki [Geotectonics with the elements of geodynamics].
Moscow, Izd-vo MSU Publ., 1995. 480 p.
9. Moskovskii G. A., Golovin B. A., Goriainov V. A. [Experience of observing impurities in salt minerals by drill core and slime].
Novye dannye po geologii, geokhimii, podzemnym vodam i poleznym iskopaemym solenosnykh basseinov [New data on geology,
geochemistry, underground waters, and minerals from saline basins]. Novosibirsk, Nauka Publ., 1982, pp. 115–119.
10. Krivokhatskii A. S., Savonenkov V. G., Rogozin Iu. M. Geokhimicheskie aspekty ispol'zovaniia zalezhei kamennoi
soli dlia zakhoroneniia radioaktivnykh otkhodov [Geochemical aspects of rock-salt deposits use for geological disposal
of radioactive waste]. Kiev, In-t geologich. nauk Publ., 1991, pp. 13.
11. Savonenkov V. G., Krivokhatskii A. S. Lokalizatsiia radioaktivnykh produktov (otkhodov) v solianom kupole Azgir
[Radioactive products (waste) localization in salt dome of Azgir]. Moscow, TsNIIatominform Publ., 1993. 48 p.
12. Svidzinskii S. A. Zakonomernosti stroeniia i metodika izucheniia galogennykh kompleksov solianokupol'nykh
regionov: dis. … d-ra geol.-mineral. nauk [Structural relationships and methodology for the study of halogen complexes
of salt dome regions. Dr. geol.-min. sci. diss.]. Volgograd, 2001. 287 p.
13. Geguzin Ia. E., Dziuba A. S., Kruzhanov V. S. [Observation of liquid impurities behavior in a crystal in the field of
thermal gradient]. Kristallografiia – Crystallography, 1975, vol. 20, no. 2, pp. 383–391. (In Russ.)
14. Ozerenko A. F., Kuksov A. K., Bulatov A. I. and others. Preduprezhdenie i likvidatsiia gazonefteproiavlenii pri
burenii skvazhin [Prevention and oil and gas shows response when drilling wells]. Moscow, Nedra Publ., 1978. 279 p.
15. Skalle P., Podio A. L. [Some tendencies, detected under the analysis of 1200 uncontrolled blowouts, which happened
near the Gulf of Mexico in the period from 1960 to 1996]. Neftegazovye tekhnologii – Oil and Gas Technologies, 1998,
no. 5/6, pp. 55–61.

Mislibaev I. T., Zairov Sh. Sh., Tukhtashev A. B., Normatova M. Zh. – Navoiy State Mining Institute, Navoiy,
Republic of Uzbekistan. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
The technique of dust reduction and explosives efficiency improvement is developed under bulk explosions at open pits
with the use of vacuum envelope filled with soap stock (wastes of oil-fat plant) and water at the ration 50:50 at the face
part of a well. Dust sedimentation intensification over the explosion site allows reducing the pollution of the territory
enclosing the open pit, which affects favorably the ecological situation in the region of mining operations. Atmosphere
dust and gas pollution parameters calculation has been fulfilled under the conduct of drilling and blasting operations at
open pits with the account of physical and mechanical properties of rocks and their water content, blastholes drilling
techniques, the range of the explosives applied, the type of stemming material applied, blasting methods, bulk explosion
firing time, weather conditions at the process of explosion, etc. It is stated that when explosive gas passes through the
envelope with soap stock and water in the face part of the well there is the convection heat transfer from gas to
the envelope together with the loss of the part of partial pressure on the walls of the well in the place of the envelope
location. Due to the loss of heat, dust and gas cloud loses a part of its energy, which leads to the reduction of its rise
height and prevention from its relocation beyond the limits of the open pit space.
Key words: drilling and blasting operations; dust and gas emission; dust reduction; bulk explosion; soap stock; ecological
situation; parameters of dust and gas pollution; explosive gas; heat loss; explosion gas pressure; explosives charging
1. Sytenkov V. N. Upravlenie pylegazovym rezhimom glubokikh kar'erov [Control over dust and gas conditions of deep
open pits]. Moscow, Geoinformtsentr Publ., 2003. 288 p.
2. Shemetov P. A., Norov Iu. D. Burovzryvnye raboty: ucheb. posobie [School book “Drilling and blasting operation”].
Navoiy, 2005. 207 p.
3. Mal'gin O. N., Rubtsov S. K., Shemetov P. A. and others. Sovershenstvovanie tekhnologicheskikh protsessov
burovzryvnykh rabot na otkrytykh gornykh rabotakh [The development of technological processes of drilling and
blasting operations at opencast mining]. Tashkent, Fan Publ., 2003. 199 p.
4. Tyshchuk V. Iu. [Analytical parameters determination and ways and means of dust and gas reduction examination
under bulk explosions at open pits]. Visnik KDPU – The Bulletin of Kryvyi Rih State Pedagogical University, 2007,
issue 1, pt. 1, pp. 98–101.

Andreiko S. S., Lialina T. A. – Mining Institute of the Ural Branch of RAS, Perm, the Russian Federation.
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Allocation maps of gas emission at the territory of Verkhnekamskoye deposit of potassium salts are built and analyzed in
relation to the deposit’s separate sections, oil fields, and oil promising structures. Maps analysis shows the confinedness
of gas emission out of geologic prospecting wells to oil fields and oil promising structures. Gas emission density at the
sections of the deposit is calculated; maximum density is detected at Solikamsk (SKRU-1) and Palashersky sections.
Further examination of the effect of territorial co-occurrence and influence patterns of oil-and-gas content of underlying
deposits of Solikamsk basin will allow investigating and developing the localization technology for gas dynamic hazard
sections of Verkhnekamskoye deposit of potassium salts and purposefully use the preventive measures for intensive gas
emission and gas dynamic events.

Key words: gas emission; geologic prospecting wells; oil fields; oil promising structures; gas dynamic events.

1. Safety instructions on mining operations and hard minerals processing: the order of the Federal Service for
Environmental, Technological and Nuclear Supervision, dated 11th December, 2013, no. 599. Access from the legal
reference system “Consultant Plus”. (In Russ.)
2. Proskuriakov N. M. Upravlenie gazodinamicheskimi protsessami v plastakh kaliinykh rud [Control ove gas dynamic
processes in potassium ores beds]. Moscow, Nedra Publ., 1988. 239 p.
3. Kudriashov A. I., Andreiko S. S. [Regarding the nature of sudden outbursts of salt and gas focuses] Izvestiya vysshikh
uchebnykh zavedenii. Gornyi zhurnal – News of the Higher Institutions. Mining Journal, 1986, no. 2, pp. 10–11. (In Russ.)
4. Andreiko S. S. [Statistic criteria and the estimation results of gas dynamic events distribution regularities in potassium
deposits]. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh – Physical and Technical Issues of Mineral
Development, 2003, no. 4, pp. 45–55. (In Russ.)
5. Andreiko S. S., Ivanov O. V., Kharintsev A. V., Chistiakov A. N. [Forecasting outburst-prone zones of beds when prospecting
and developing potassium salts deposits]. Gornyi Zhurnal – Mining Journal, 2008, no. 10, pp. 34–36. (In Russ.)
6. Lialina T. A., Litvinovskaia N. A., Andreiko S. S. [Control over gas dynamic processes in the rocks of the mine’s soil
when developing sylvinite layer AB of Verkhnekamskoye deposit of potassium salts]. Gornyi Zhurnal – Mining Journal,
2015, no. 4, pp. 89–92. (In Russ.)
7. Andreiko S. S., Beresnev S. P., Seniuk V. V., Gonchar V. I., Litvinovskaia N. A. [Examination of the formation
mechanism of gas dynamic hazardous zones in the rocks of potassium horizon]. Gornyi Zhurnal – Mining Journal,
2010, no. 8, pp. 31–33. (In Russ.)
8. Andreiko S. S., Ivanov O. V., Litvinovskaia N. A. Prognozirovanie i predotvrashchenie gazodinamicheskikh iavlenii
iz pochvy pri prokhodke podgotovitel'nykh vyrabotok v podrabotannom massive solianykh porod [Forecasting and
preventing gas dynamic events at soil when fulfilling prospecting works in underworked seam of saliferous rocks].
Perm, Izd-vo PNIPU Publ., 2015. 159 p.
9. Andreiko S. S. [Gas emission when drilling geologic prospecting wells at Verkhnekamskoye deposit]. Ventiliatsiia
shakht i rudnikov. Aeropylegazodinamika gornykh vyrabotok: sb. nauch. tr. [Collective works “Shaft and mines
ventilation. Aerodust gas dynamics of mine works”]. Leningrad, Izd-vo LSI Publ., 1987, pp. 16–20. (In Russ.)
10. Andreiko S. S., Lialina T. A. [Gas emission regularities out of geologic prospecting wells at Verkhnekamskoye
deposit]. Geologiia v razvivaiushchemsia mire: sb. nauch. tr. po materialam IX mezhdunar. nauch.-prakt. konf. stud.,
asp. i molodykh uchenykh. Otv. red. R. R. Gil'mutdinov [Collective works on the proc. of 9th Int. Sci.-to-Pract. Conf. of
students, candidates, and young scientists “Geology in the developing world”. Edited by R. R. Gil'mutdinov]. Perm,
Izd-vo PGNIU Publ., 2016, vol. 1., pp. 437–440. (In Russ.)
11. Galkin V. I. Analiz geologicheskogo stroeniia i otsenka vozmozhnosti razrabotki neftianykh mestorozhdenii,
raspolozhennykh pod tolshchei kaliino-magnievykh solei Verkhnekamskogo mestorozhdeniia Permskoi oblasti
[The analysis of geological structure and capability assessment of oil fields exploitation under the mass of potassiummagnesium
salts of Verkhnekamskoye deposit in Perm region]. Perm, Izd-vo PGTU Publ., 2005, pp. 41–52.
12. Andreiko S. S., Lialina T. A. [The analysis of gas emission out of geological prospecting wells for safe construction
and exploitation of potassium mine workings at Verkhnekamskoye deposit of potassium salts]. Proektirovanie,
stroitel'stvo i ekspluatatsiia kompleksov podzemnykh sooruzhenii: mater. V Mezhdunar. konf. (7–8 okt. 2016 g.). Otv.
red. M. V. Kornilkov [Proc. 5th Int. Conf. “Design, construction and exploitation of underground installations”. Edited
by M. V. Kornilkov (7th-8th October 2016)]. Ekaterinburg, Izd-vo UrSMU Publ., 2016, pp. 193–197. (In Russ.)

УДК 622.235

Разработан способ улучшения пылеподавления и повышения эффективности взрывчатых ве-
ществ при массовых взрывах на карьерах с использованием в забоечной части скважины герме-
тичной оболочки, заполненной соапстоком (отход масложирового комбината) и водой в соот-
ношении 50 : 50. Интенсификация процесса осаждения пыли над местом взрыва позволяет
уменьшить загрязнение окружающей карьер территории, что благоприятно отражается на
экологической обстановке в районе производства горных работ. Произведен расчет параме-
тров пылегазового загрязнения атмосферы при ведении буровзрывных работ на карьерах с уче-
том физико-механических свойств горных пород и их обводненности, способов бурения взрыв-
ных скважин, ассортимента применяемых взрывчатых веществ, типа используемых
забоечных материалов, методов взрывания, времени производства массового взрыва, метеоус-
ловий на момент массового взрыва и др. Установлено, что при прохождении взрывных газов
через оболочку с соапстоком и водой в забоечной части скважины происходит конвективная
теплоотдача от газа оболочке и потеря доли парциального давления на стенки скважины в
месте расположения оболочки. За счет потери тепла пылегазовое облако теряет часть своей
энергии, что ведет к снижению высоты его подъема и предотвращению выноса за пределы
карьерного пространства.

К л ю ч е в ы е с л о в а : буровзрывные работы; выделение пыли и газов; пылеподавление; массо-
вый взрыв; соапсток; экологическая обстановка; параметры пылегазового загрязнения; взрыв-
ные газы; тепловые потери; давление газов взрыва; плотность заряжания ВВ; масса пыли.

1. Сытенков В. Н. Управление пылегазовым режимом глубоких карьеров. М.: Геоинформцентр,
2003. 288 с.
2. Шеметов П. А., Норов Ю. Д. Буровзрывные работы: учеб. пособие. Навои, 2005. 207 с.
ISSN 0536-1028 «Известия вузов. Горный журнал», № 2, 2017 43
3. Мальгин О. Н., Рубцов С. К., Шеметов П. А. и др. Совершенствование технологических про-
цессов буровзрывных работ на открытых горных работах. Ташкент: Фан, 2003. 199 с.
4. Тыщук В. Ю. Аналитическое определение параметров и исследование способа и средства пы-
легазоподавления при массовых взрывах в карьерах // Вiсник КДПУ. 2007. Вип. 1. Ч. 1. С. 98–101.
Поступила в редакцию 12 декабря 2016 года

Mikhailov A. V., Lopatiuk A. O. – Saint Petersburg Mining University, Saint Petersburg, the Russian Federation.
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Shishliannikov D. I. – Perm National Research Polytechnic University, Perm, the Russian Federation.
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Some peculiarities of peat massif high-speed milling process are examined within natural position conditions with the use
of the method of hydromechanization. In the course of the analysis of utilizable technical equipment park for peat
reclamation the conclusion has been made, that the problem of portable multifunctional hydromechanical aggregate
development is up-to-date. Main peculiarities of the process of cutting peat massif are described with the account of its
characteristics, i.e. elastic and plastic properties, peat decay degree, floral and wood inclusions, and structure. Possible
geometrical parameters of milling cutter elements are analyzed. The work substantiates the necessity to use curved
blades as milling cutter elements to provide the process of cutting with sliding. The calculation is fulfilled of hydrodynamic
resistances, which occur in the process of cutting flooded peat massif.

Key words: peat; milling cutter; hydromechanization; hydrodynamics; sliding; cutting; curved blade.

1. World Energy Resources: 2013 Survey. Available at: www.worldenergy.org/wpcontent/uploads/2013/10/
WER_2013_6_Peat.pdf (Access date: 27th June 2016).
2. Apukhtin P. A., Plakitkina L. S. Dobycha torfa v Rossii i mire: analiz razvitiia torfianoi promyshlennosti v Rossii i
mire v period s 2000 po 2009 gody [Peat recovery in Russia and in the world: the analysis of peat industry development
and in the world in the period from 2000 to 2009]. Available at: www.mining-media.ru/ru/article/ekonomic/159-
gody (access date 20th July 2016).
3. Ogorodnikov S. P. Gidromekhanizatsiia razrabotki gruntov [Ground exploitation hydromechanization]. Moscow,
Stroiizdat Publ., 1986. 253 p.
32 «Известия вузов. Горный журнал», № 2, 2017 ISSN 0536-1028
4. Lopatiuk A. O. [Structure analysis of an aggregate for hydromechanical peat extraction]. Innovatsii na transporte
i v mashinostroenii: sb. trudov III mezhdunar.nauch.-prakt. konf. [Collection of studies of the 3rd Int. Sci.-to-Pract. Conf.
“Innovations in transport and mechanic engineering”]. Vol. II, St. Petersburg, Izd-vo NMSU “Gornyi” Publ., 2015,
pp. 80–83. (In Russ.)
5. Spravochnik po torfu. Pod red. A. V. Lazareva [Reference book on peat. Edited by A. V. Lazarev]. Moscow, Nedra
Publ., 1982. 760 p.
6. Vialov S. S. Reologicheskie osnovy mekhaniki gruntov: ucheb. posobie dlia vuzov [School book for institutes
of higher education “Rheological fundamentals of grounds mechanics”]. Moscow, Vyssh. shkola Publ., 1978. 447 p.
7. Reznik N. E. Teoriia rezaniia lezviem i osnovy rascheta rezhushchikh apparatov [The theory of cutting with blade and
cutting machines calculations fundamentals]. Moscow, Mashinostroenie Publ., 1975. 311 p.
8. Dombrovskii N. G. Ekskavatory. Obshchie voprosy teorii, proektirovaniia, issledovaniia i primeneniia [Excavators.
General problems of theory, design, investigation and application]. Moscow, Mashinostroenie Publ., 1969. 319 p.
9. Loitsianskii L. G., Lur'e A. I. Kurs teoreticheskoi mekhaniki. T. 1. Statika i kinematika. [The course of theoretical
mechanics. T. 1. Statics and kinematics]. Moscow, Nauka Publ., 1982. 352 p.
10. Andreev G. N. Dopolnitel'nye glavy geometrii. Differentsial'naia geometriia krivykh i poverkhnostei: ucheb. posobie
[School book “Advanced course of geometry. Differential geometry of curved surfaces”]. Moscow, MSIU Publ.,
2007. 184 p.
11. Emtsev B. T. Tekhnicheskaia gidromekhanika [Technical hydromechanics]. Moscow, Mashinostroenie Publ.,
1978. 463 p.
12. Tagaev Kh. Formula Tagaeva po opredeleniiu gidrodinamicheskogo soprotivleniia vody [Tagaev formula on the
determination of hydrodynamic resistance of water]. Available at: gisap.eu/ru/node/62815 (access date 20th July 2016).
13. Levanov N. I., Ialtanets I. M., Mel'nikov I. T., Diatlov V. M. Rabochie parametry gruntozabornykh ustroistv
plavuchikh zemlesosnykh snariadov i ikh konstruktivnye osobennosti. Pod red. I. M. Ialtantsa [Working parameters
of dragheads of floating suctiontube dredges and their constructive features. Edited by I. M. Ialtanets]. Moscow, Izd-vo
MGGU Publ. 2008. 235 p.
14. Iufin A. P. Gidromekhanizatsiia: ucheb. posobie dlia vuzov [School book for institutes of higher education
“Hydromechanization”]. Moscow, Stroiizdat Publ., 1974. 223 p.



This email address is being protected from spambots. You need JavaScript enabled to view it.

Мы индексируемся в: