/

 

ISSN 0536-1028 (Print)              ISSN 2686-9853 (Online)  
УДК 001.8:622.256.75:622.45: 622.678.53  DOI: 10.21440/0536-1028-2019-8-133-142 Download

Kopytov A. I., Pershin V. V., Wetti A. A. Research on free fall skip parameters variation impact on pentice stability when sinking vertical shafts. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 8: 133–142 (In Russ.). OI: 10.21440/0536-1028-2019-8-133-142

Abstract

Introduction. In order to protect workers engaged in shaft sinking works, artificial protective equipment (pentices) with the support element from powerful I-beams or truss structures are used. They have to withstand enormous push loading, be strong, simple in design, have less labor input during construction and dismantling.
Research aim. On the basis of the obtained results of mathematical modeling, the research aims to increase the efficiency of equipment for the deepening of vertical shafts of mines, by justifying the dynamic loads on the safety shelves and determining their rational parameters, which ensure the reduction of material intensity and labor-intensive work.
Methodology. In order to substantiate parameters and develop the design of pentices when sinking vertical shafts in case of operational winding performance, with the help of mathematical modeling, the dependencies between the skip fall time at falling height variation with the account of speed and the direction of the air flow in the shaft were determined.
Results. LLC SibGorComplexEngineering (Novokuznetsk) together with the Department of Construction of Underground Structures and Mines of T. F. Gorbachev Kuzbass State Technical University have developed several new design variants of protective pentices for vertical shafts sinking in case of operational winding performance. It is a Z-shaped structure of the offset in height, parallel to each other upper and lower protective pentices, bushed with sloped reflective metal sheets and interconnected by a vertical division wall.
Summary. Pentice design allows reducing the impact of push loading due to direction changing and kinetic energy reduction of falling bodies. Industrial testing of a new construction of wedge protective pentices proved their high reliability, efficiency and safety of operations under shaft sinking Skipovoi of Gorno-Shoria branch of OJSC Evrazruda.

Key words: vertical shaft; shafts sinking; wedge protective pentice; dynamic load; skip fall.

 

REFERENCES

  1. Kempson W. J. Designing energy-efficient mineshaft systems. Essays Innovate. 2014; 9: 76–79.
  2. Kratz T., Martens P. N. Optimization of mucking and hoisting operation in conventional shaft sinking. Glückauf. 2015; 2: 16–22.
  3. Shutko Iu. P., Morozov A. E., Mordukhovich V. D. Sinking vertical shafts. Moscow: Nedra Publishing; 1978. (In Russ.)
  4. Ksenofontova A. I. Reference on shaft ventilation. Moscow: Gosgortekhizdat Publishing; 1962. (In Russ.)
  5. Ushakov K. Z. Reference on shaft ventilation. Moscow: Nedra Publishing; 1977. (In Russ.)
  6. Zadorozhnii A. M., Lipovik V. V., Kozariz V. Ia. Estimating the parameters of free vessel motion in a shaft. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 1979; 5: 24–28. (In Russ.)
  7. Kopytov A. I., Voitov M. D., Veti A. A. New engineering solutions for safety platforms in deepening mine shafts. Gornyi zhurnal = Mining Journal. 2015; 1: 67–70. (In Russ.)
  8. Pershin V. V., Kopytov A. I., Fadeev Yu. A., Wetti A. A. Study of the dynamic loading impact on the design of pentices when sinking vertical mine shafts. In: E3S web of conferences. IIIrd International Innovative Mining Symposium. 2018; 41: 105–109.
  9. Zhuk I. V., Kopytov A. I., Pershin V. V., Voitov M. D., Veti A. A. Wedge pentice. Patent RF no. 2013120745. (In Russ.)
  10. Kopytov A. I., Voitov M. D., Veti A. A. Wedge pentice. Patent RF no. 2013152988/03. (In Russ.)
  11. Kopytov A. I., Pershin V. V., Fadeev Iu. A., Veti A. A. Research on the impact of dynamic load on the structure of safety units when sinking skip shafts. Gornyi zhurnal = Mining Journal. 2019; 4: 27–31. (In Russ.)
  12. Kopytov A. I., Pershin V. V., Voitov M. D., Wetti A. A. The improvement of the pentice construction of mine-shaft equipment. In: The 8th Russian-Chines symposium coal in 21st century: mining, processing and safety. 2016. P. 108–111.

Received 24 May 2019

 

 

УДК 622.231 DOI: 10.21440/0536-1028-2019-8-125-132 Download

Shikhov A. M., Rumiantsev S. A., Azarov E. B. Vibratory conveying equipment with steady elliptical oscillations. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 8: 125–132. DOI: 10.21440/0536-1028-2019-8-125-132

Abstract

Introduction. Vibratory conveying equipment is widely used in many branches of mining industry at various enterprises (concentrating mills, transfer points at railway stations, steelworks, etc.). Design of vibratory conveying equipment with new qualities requires a more detailed analysis of oscillation parameters, in particular, oscillation parameters of machine working member.
Research aim is to investigate the oscillation parameters of vibratory conveying equipment with three vibration exciters by means of vibratory equipment dynamics mathematical model.
Methodology. The nature of working member movements is studied by means of vibratory equipment dynamics mathematical model. The model is based on the numerical solution to a system of diferential equations governing the dynamics of vibratory conveying equipment with n-unbalance vibration exciters.
Results. The present article investigates the parameters of oscillations and the features of the center-of-mass motion in vibratory conveying equipment with three vibration exciters placed on one working member. As a result of numerical experiment, the impact of location of vibration exciters and eccentric torque of unpaired vibration exciters on the working member vibration parameters has been determined. The dependence between the direction of mass center trajectory and the direction of an unpaired vibration exciter rotation is studied.
Summary. The quoted results of theoretical studies through a mathematical model show that the addition of a third vibration exciter to vibratory conveying equipment design qualitatively infuences working member vibration parameters: by changing the position and eccentric torque of an unpaired vibration exciter, it is possible to get the various options of working member vibrations. Consequently, the study of new types of vibratory equipment is a very promising direction.

Key words: vibratory conveying equipment; vibrating screen; self-synchronization; vibration exciter; dynamics; mathematical model.


REFERENCES

  1. Blekhman I. I. Synchronization of dynamic systems. Moscow: Nauka Publishing; 1971. (In Russ.)
  2. Irvin R. A. Large vibrating screen design-manufacturing and maintenance consideration. Mining Engineering. 1984; 36 (9): 1341–1346.
  3. Sperling L. Selbstsynchronisation statisch und dynamisch unwuchtiger Vibratoren. Technische Mechanic. 1994; 14 (1, 2).
  4. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A universal concept in nonlinear sciences. Cambridge Nonlinear Science. Series 12. Cambridge University press, 2001. 411 p.
  5. Kartavyi A. N. Vibration units for processing of mineral and technogenic raw materials. Modeling and elements of calculation for criteria of energy and resource effi ciency. Moscow: MSMU Publishing; 2014. (In Russ.)
  6. Kosolapov A. N. Periodic solutions of forced oscillations of vibratory conveying equipment working 
    member in view of disturbance load and friction force in supports. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 1989; 11: 103–107. (In Russ.)
  7. Afanasiev A. I., Kazakov Iu. M., Suslov D. N., Chirkova A. A. Analysis of overall performance of vibration exciters of resonant vibratory conveying equipment. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2018; 1: 71–77. (In Russ.)
  8. Afanasiev A. I., Suslov D. N., Chirkova A. A. Assessment of energy effi ciency of resonant vibratory conveying equipment. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2018; 2: 68–75. (In Russ.)
  9. Afanasiev A. I., Suslov D. N. Evaluation of energy effi ciency of resonance conveyor vibration exciters. Gornyi informatsionno-analiticheskii biulleten (nauchno-tekhnicheskii zhurnal) = Mining Informational and Analytical Bulletin (scientifi c and technical journal). 2018; 1: 126–132. (In Russ.)
  10. Afanasiev A. I., Potapov V. Ia., Suslov D. N., Chirkova A. A. Reducing the load of the elastic support of the resonance vibrating conveyor machines. Izvestiya Uralskogo Gosudarstvennogo Gornogo Universiteta = News of the Ural State Mining University. 2018; 1(49): 85–87. (In Russ.)
  11. Rumiantsev S. A., Azarov E. B., Alekseeva O. N., Tarasov D. Iu., Shikhov A. M. Non-linear dynamics of new perspective types of vibration transport machines with selfsinchronized vibration exciters. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo = Vestnik of Lobachevsky State University of Nizhni Novgorod. 2011; 4 (2): 302–304. (In Russ.)
  12. Rumyantsev S., Alexeyeva O., Azarov E., Shihov A. Numerical simulation of non-linear dynamics of vibration transport machines. Recent Researches in Engineering and Automatic Control. Spain, 2011. Р. 88–92.
  13. Azarov E. B., Rumiantsev S. A., Shikhov A. M. Experimental vibration table to study oscillatory system dynamics. Transport Urala = Transport of the Urals. 2014; 4: 3–7. (In Russ.)

Received 5 July 2019

 

УДК 338.23:330.52(98) DOI: 10.21440/0536-1028-2019-8-97-107 Download

Semenov A. N., Seryi R. S. Hard-to-wash sand disintegration investigation in gold placers. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 8: 88–96 (In Russ.). DOI: 10.21440/0536-1028-2019-8-88-96

Abstract Introduction. A promising area of replenishing the resource base for placer gold mining could be the involvement of high clay content deposits. Important scientifi c and practical problem with this solution is improving the quality of sand preparation for enrichment due to high-quality disintegration. Solving the problem requires not only creating more effi cient clay sands disintegrators, but also study of sand granulometry, evaluation of their physical and mechanical properties, the material composition of the mineral rock mass. The composition of the hard-to-wash sands of the Far East shows that the clay content in them varies widely and can reach 60% or more. Analysis of the existing methods of sands deposits disintegration shows that the use of traditional methods of rock preparation for enrichment will not allow to fully solving the problem of processing high-clay alluvial deposits.
Research aim is the development of a scheme for processing high-clay sands using a high-pressure hydrodynamic disintegrator based on the principle of the effect of hydrodynamic cavitation.
Research methodology. The experiments have been carried out on high-clay sand processing with a laboratory disintegration facility with various cavity activators.
Results. In the course of the study, the design of the device for the disintegration of high-clay sands was developed and proposed for practical implementation, allowing to reduce the loss of gold in the enrichment of high-clay sands on sluice washers, as well as to engage in mining alluvial deposits with high clay content, mining of which was previously considered unprofitable. The use of this technological scheme will make it possible to switch from a two-stage technology for the processing of placers to a one-stage, incorporating the processing of sands and effel into a single technological process, eliminating the costs of processing man-made alluvial sands of gold deposits.

Key words: placer gold deposit; high clay content sands; disintegration; cavitation; hydrodynamic disintegrator.

 

REFERENCES

  1. Mirzekhanov G. S., Litvintsev V. S. Mining waste management at precious metal placers in the Russian Far East: State-of-the-art and problems. Gornyi zhurnal = Mining Journal. 2018; 10: 25–30. DOI: 10.17580/gzh.2018.10.04. (In Russ.)
  2. Mirzekhanov G. S., Mirzekhanova Z. G. Resource potential of technogenic formations of gold placers. Moscow: MAKS Press Publishing; 2013. (In Russ.)
  3. Litvintsev V. S., Sas P. P. Current state and main directions of innovative development of placer gold mining in Far East Federal District. In: E3S Web of Conferences. 2018; 56. DOI: 10.1051/ e3sconf/20185604004
  4. Litvitsev V. S., Alexeev V. S., Kradenykh I. A. The technology of development of residue objects of precious metals placer deposits. In: E3S Web of Conferences. 2018; 56. DOI: 10.1051/e3sconf/20185601005
  5. MacFarlane K. E., Nordling M. G. Yukon Exploration and Geology Overview 2013. Whitehorse, Canada (Yukon Geological Survey), 2014. 80 p.
  6. Oberthuer T., Melcher F., Weiser T. W. Detrital platinum-group minerals and gold in placers of southeastern Samar Island, Philippines. Canadian Mineralogist. 2017; 55(3): 45–62.
  7. Seryi R. S., Nechaev V. V. On the necessity of an integrated approach to the problem of disintegration of hard-to-wash sands of placers. Gornyi informatsionno-analiticheskii biulleten (nauchno-tekhnicheskii zhurnal) = Mining Informational and Analytical Bulletin (scientific and technical journal). 2009; special edition 4. Far East-1. pp. 268–274. (In Russ.)
  8. Khnykin V. F. Prospects of hard-to-wash high-clay gold placers. Gornyi zhurnal = Mining Journal. 1995; 11: 26–31. (In Russ.)
  9. Beloborodov V. I., Fedotov K. V., Romanenko A. A. Concentrating gold-bearing sand with a high content of clay. Gornyi zhurnal = Mining Journal. 1995; 5: 12–18. (In Russ.)
  10. Kisliakov V. E., Karepanov A. V., Semenov A. N. Results of research of clay-bearing sand preparation to gravitational concentration. In: Gravitational methods of concentration. Modern concentration equipment and new technologies to process mineral raw material. Proceedings of the 2nd science and technical conference dedicated to the 100th anniversary of Trud plant. Novosibirsk: Sibprint Publishing; 2005. p. 87–89. (In Russ.)
  11. Levkovskii Iu. L. The structure of cavitation flows. Leningrad: Sudostroenie Publishing; 1978. (In Russ.)
  12. Kisliakov V. E., Karepanov A. V., Semenov A. N. Study of clay-bearing sand washing efficiency. In: Modern technologies of mineral resources development: collection of works. Krasnoyarsk: GATsMiZ Publishing; 2004. p. 354–362. (In Russ.)
  13. Karepanov A. V., Semenov A. N. Study of clay softening with the use of hydrodynamical cavitation. In: Modern technologies of mineral resources development: collection of works. Krasnoyarsk: GATsMiZ Publishing; 2005. p. 190–194. (In Russ.)

Received 7 May 2019

 

 

УДК 332.14;553.04 DOI: 10.21440/0536-1028-2019-8-108-124 Download

Naumov I. V., Krasnykh S. S. The research of interregional relationships in the development of the mineral resource complex of the Russian Federation. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2019; 8: 108–124 (In Russ.). DOI: 10.21440/0536-1028-2019-8-108-1244

ABSTRACT

The research aims to study and model inter-regional interconnections in the development of mineral resource complex of the Russian Federation and determine the main vectors of their development for the implementation of RF Spatial Development Strategy for the period up to 2025. The research methodology is based on spatial econometrics tools application, such as: spatial autocorrelation of RF subjects in the main areas mineral resource complex development. Results. The spatial analysis of regions interconnection in the development of the mineral resource complex with the use of autocorrelation according to Moran method allowed us to establish RF promising centers for oil and gas production (Sakha, Sakhalin, Tomsk, Astrakhan, Samara, and Orenburg regions), gold and metal ore (Krasnoyarsk, Transbaikal and Kamchatka regions, the Republic of Buryatia and the Kemerovo region), coal (Komi Republic, Sakha and Buryatia, Novosibirsk Region, Krasnoyarsk Krai). These territories are not considered by the Strategy for Spatial Development of the Russian Federation for the period up to 2025 as priority mineral resource centers. Summary. The spatial development strategy of the Russian Federation for the period until 2025 considers only the Republic of Sakha (Yakutia), Komi and Tatarstan, Krasnoyarsk, Khabarovsk Territory, Nenetsky, Khanty-Mansiysk and Yamalo-Nenets, Chukotka Autonomous Districts, Tyumen, Kemerovo, Irkutsk, Amur, Magadan and Sakhalin regions as priority territories for the spatial development of the mineral resource complex. At the same time, mineral resources development of a number of regions in the Southern, Ural and Siberian macro-regions is ignored. The territorial systems that make up the Ural macro-region have high levels of mineral production and are promising mineral resource centers of the country, which have all the necessary resources and close ties with other regions in processing the extracted raw materials. Key words: interregional relationships; mineral and raw materials complex of RF; spatial autocorrelation; RF Spatial Development Strategy until 2025. Acknowledgements. The research has been carried out in accordance with the research plan of the Laboratory for Spatial Development of Territories, Institute of Economics UB RAS for 2019.

REFERENCES
1. Chan T. H., Egorova M. S. Russian mineral base. The infuence of the mineral resources sector on the
country’s economy. Molodoj uchenyj = Young Scientist. 2015; 11.4: 226–229. (In Russ.)
2. Chuikov A. The century of the minerals. Argumenty nedeli = Arguments of the Week. 2015; 33: 3.
(In Russ.)
3. Petrov O. V., Tatarkin A. I. An innovative model for the expanded reproduction of the mineral resource
base in the Russian Federation. In: The strategy of fnding and resourcing mineral resources centers at the
territory of the Russian Federation: round table, 25–26 November, 2010. St. Petersburg: VSEGEI
Publishing; 2010. p. 29–37. (In Russ.)
4. Kimelman S. A., Nezhenskii I. A. Mineral resources potential of the Russian Federation in material and
monetary terms. Otkrytoe obrazovanie = Open Education. 2011; 2-2: 257–260 (In Russ.)
5. Petrov O. V. On the efective use of mineral resources potential of Russian subsoil. Vestnik ChelGU =
Bulletin of Chelyabinsk State University. 2010; 2: 20–28. (In Russ.)
6. Rapakov G. G., Lebedeva E. A., Gorbunov V. A., Abdalov K. A., Melnichuk O. V. Spatial cluster
analysis and emission detection by using geoinformation technology. Vestnik Cherepoveckogo
gosudarstvennogo universiteta = Bulletin of the Cherepovets State University. 2018; 5 (86): 25–35.
(In Russ.)
7. Balash V. A., Faizliev A. R. The spatial correlation in statistical researches. Vestnik Saratovskogo
gosudarstvennogo sotsialno-ekonomicheskogo universiteta = Bulletin of the Saratov State Socio-Economic
University. 2008; 4 (23): 122–125 (In Russ.)
8. Naumov I. V. Investigation of the interregional relationships in the processes of shaping the territories’
investment potential using the methods of spatial modelling. Ekonomika regiona = Economic of Region.
2019; 3: 720–735. (In Russ.)
9. Moran P. Notes on continuous stochastic phenomena. Biometrika. 1950; 37(1/2): 17–23. Available from:
https://doi. org/10.2307/23321 42 1950
10. Anselin L. Local indicators of spatial association—LISA. Geogr Analis. 1995; 27(2): 93–115. Available
from: https ://doi. org/10.1111/j.1538-4632.1995.tb003 38.x
11. Geary R. The contiguity ratio and statistical mapping. Inc Stat. 1954; 5(3): 115–146. Available from:
https ://doi. org/10.2307/29866 45
12. Anselin L. The Moran Scatterplot as an ESDA Tool to Assess Local Instability in Spatial Association.
In Spatial Analytical Perspectives on Gis in Environmental and Socio-Economic Sciences.
1996. p.111–25.
13. Damodar N., Gujarati. Basic Econometrics. The McGraw-Hill Companies. New York. 2004; 4: 1002.
14. Korzhubaev A. G., Filimonova I. V., Mishenin M. V. Modern strategy of integrated development of oil
and gas resources of the Russian East. Burenie i neft = Drilling and oil. 2011; 11: 24–28 (In Russ.)
15. Metkin D. M. Economic evaluation of hydrocarbon deposits of Sakhalin shelf. Zapiski Gornogo
instituta = Journal of Mining Institute. 2007. 184–187. (In Russ.)
16. Sharf I. V., Grinkevich L. S. Assessing the Extraction Potential of Tomsk Region's Difcult-To-Obtain
Oil Reserves. Ekonomika regiona = Economy of Region. 2016; 1: 201–210. (In Russ.)
17. Taraskina Y. V. Fuel and energy complex of the astrakhan region: state and prospects of its development.
Vestnik Astrahanskogo gosudarstvennogo tekhnicheskogo universiteta, nauchnyj zhurnal seriya
«Ekonomika» = Bulletin of the Astrakhan State Technical University, a scientifc journal series
"Economics". 2011; 1: 117–123. (In Russ.)
18. Aralbaeva G. G., Aralbaev Z. T. Trends in the development of oil and gas industry in the orenburg
region. Vestnik OGU = Bulletin of Orenburg State University. 2014; 4(165): 159–164 (In Russ.)
19. Ashihmin A. A., Pogonin V. V. Developing the mechanisms of stimulating investments into the projects
of goldfelds development of Krasnoyarsk Krai. Gornyi informatsionno-analiticheskii biulleten (nauchno-
tekhnicheskii zhurnal) = Mining Informational and Analytical Bulletin (scientifc and technical journal).
1999; 4. (In Russ.)
20. Korchagina D. A. Trans-Baikal area gold mineral base status and development forecast. Otechestvennaya
geologiya = National Geology. 2019; 4: 3–13. (In Russ.)
21. Shirkova E. E., Shirkov E. I., Diakov M. Iu. Kamchatka’s natural resource potential assessment and the
problems of its use in the long term. Issledovaniya vodnyh biologicheskih resursov Kamchatki i severo-
zapadnoj chasti Tihogo okeana = Studies of aquatic biological resources of Kamchatka and the Northwest
Pacifc. 2014; 35: 5–21. (In Russ.)
22. State register of mineral resources in the Russian Federation as of January 2016. Issue 29. Gold.
Vol. 7. Siberian Federal District. Part. 7. The Republic of Buryatia. Moscow; 2016. (In Russ.)
23. Chernykh A. I., Kuraev A. A. State and prospects of gold mineral resource base development in the
Kemerovo region. Geologiya i mineralno-syrievye resursy Sibiri = Geology and mineral resources of
Siberia. 2010; 3: 10. (In Russ.)
24. Kalinin E. P. Mineral and raw materials potential of the Republic of Komi at the present time. Vestnik
Instituta geologii Komi NC UrO RAN = Bulletin of the Institute of Geology of Komi Scientifc Center, Ural
Branch of RAS. 2010; 6: 10–17. (In Russ.)
25. Vlasenko A. V., Skriabin V. V., Patsuk O. V. The state and prospect of coal-mining industry in the
Krasnoyarsk Krai. Problemy sovremennoj ekonomiki i menedzhmenta = Problems of modern economics
and management. 2017; 35–40 (In Russ.)
26. Golubenko A. V., Novikov M. V. Perspectives for the use of coal in fuel and energy complex of the
Republic of Sakha (Yakutia). Gornyi informatsionno-analiticheskii biulleten (nauchno-tekhnicheskii
zhurnal) = Mining Informational and Analytical Bulletin (scientifc and technical journal). 2009;
12: 495–502. (In Russ.)
27. Tubchinov B. N., Shirapova S. D. The prospects of using brown coal in the Republic of Buryatia, the
features of the modern stage of natural and engineering sciences development: Proceedings of International
science to practice conference. 2018: 191–193. (In Russ.)
28. Tarazanov I. G. Russia’s coal industry performance for January – December, 2018. Ugol = The Coal.
2019; 3(116): 64–79. (In Russ.)

Received 5 September 2019

УДК 622.342.1 DOI: 10.21440/0536-1028-2019-8-88-96 Download

Семенов А. Н., Серый Р. С. Исследование процессов дезинтеграции труднопромывистых песков россыпных месторождений золота // Известия вузов. Горный журнал. 2019. № 8. С. 88–96. DOI: 10.21440/0536-1028-2019-8-88-96

АННОТАЦИЯ

Введение. Перспективным направлением пополнения сырьевой базы россыпной золотодобычи может стать вовлечение в эксплуатацию месторождений с высоким содержанием глины. Важной научно-практической задачей при этом является решение проблемы повышения качества подготовки песков к обогащению за счет качественной дезинтеграции. Решение проблемы требует не только создания более эффективных аппаратов для дезинтеграции глинистых песков, но и изучения гранулометрии песков, оценки их физико-механических свойств, вещественного состава минеральной горной массы. Состав труднопромывистых песков Дальнего Востока показывает, что содержание глины в них изменяется в широких пределах и может достигать 60 % и более. Анализ существующих способов дезинтеграции песков месторождений показывает, что использование традиционных способов подготовки породы к обогащению не позволит в полном объеме решить проблему переработки высокоглинистых россыпей.
Цель работы. Разработка схемы переработки высокоглинистых песков с применением высоконапорного гидродинамического дезинтегратора, в работе которого использован эффект гидродинамической кавитации.
Методика исследований. Выполнены эксперименты по переработке высокоглинистых песков на лабораторной дезинтегрирующей установке с различными активаторами кавитации.
Результаты. В ходе проведения исследования разработана и предложена к практической реализации конструкция установки для дезинтеграции высокоглинистых песков, позволяющая сократить потери золота при обогащении высокоглинистых песков на шлюзовых промывочных приборах, а также вовлекать в отработку россыпные месторождения с высоким содержанием глины, отработка которых ранее считалась нерентабельной. Использование данной технологической схемы позволит перейти от двухстадийной технологии переработки россыпей к одностадийной, включив в единый технологический процесс переработку песков и эфелей, исключив затраты на переработку техногенных песков россыпных месторождений золота.

Ключевые слова: россыпное месторождение золота; высокоглинистые пески; дезинтеграция; кавитация; гидродинамический дезинтегратор.

 

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

  1. Мирзеханов Г. С., Литвинцев В. С. Состояние и проблемы освоения техногенных россыпных месторождений благородных металлов в Дальневосточном регионе // Горный журнал. 2018. № 10. С. 25–30. DOI: 10.17580/gzh.2018.10.04
  2. Мирзеханов Г. С., Мирзеханова З. Г. Ресурсный потенциал техногенных образований россыпных месторождений золота. М.: МАКС Пресс, 2013. 288 с.
  3. Litvintsev V. S., Sas P. P. Current state and main directions of innovative development of placer gold mining in Far East Federal District // E3S Web of Conferences. 2018. Vol. 56. DOI: 10.1051/ e3sconf/20185604004
  4. Litvitsev V. S., Alexeev V. S., Kradenykh I. A. The technology of development of residue objects of precious metals placer deposits // E3S Web of Conferences. 2018. Vol. 56. DOI: 10.1051/ e3sconf/20185601005
  5. MacFarlane K. E., Nordling M. G. Yukon Exploration and Geology Overview 2013. Whitehorse, Canada (Yukon Geological Survey), 2014. 80 p.
  6. Oberthuer T., Melcher F., Weiser T. W. Detrital platinum-group minerals and gold in placers of southeastern Samar Island, Philippines // Canadian Mineralogist. 2017. Vol. 55(3). P. 45–62.
  7. Серый Р. С., Нечаев В. В. О необходимости комплексного подхода к решению вопроса дезинтеграции труднопромывистых песков россыпей // ГИАБ. 2009. Отд. вып. 4. Дальний Восток-1. С. 268–274.
  8. Хныкин В. Ф Перспективы разработки труднопромывистых высокоглинистых россыпных месторождений золота // Горный журнал. 1995. № 11. С. 26–31.
  9. Белобородов В. И., Федотов К. В., Романенко А. А. Обогащение золотосодержащих песков с высоким содержанием глинистых // Горный журнал. 1995. № 5. С. 12–18.
  10. Кисляков В. Е., Карепанов А. В., Семенов А. Н. Результаты исследований подготовки глинистых песков к гравитационному обогащению // Гравитационные методы обогащения. Современное обогатительное оборудование и новые технологии для переработки минерального сырья. Материалы 2-й науч.- техн. конф., посвященной 100-летию завода «Труд». Новосибирск: Сибпринт, 2005. С. 87–89.
  11. Левковский Ю. Л. Структура кавитационных течений. Л.: Судостроение, 1978. 222 с.
  12. Кисляков В. Е., Карепанов А. В., Семенов А. Н. Исследования эффективности промывки глинистых песков // Современные технологии освоения минеральных ресурсов: сб. науч. трудов. Красноярск: ГАЦМиЗ, 2004. С. 354–362.
  13. Карепанов А. В., Семенов А. Н. Исследования разупрочнения глины с использованием гидродинамической кавитации // Современные технологии освоения минеральных ресурсов: сб. науч. трудов. Красноярск: ГАЦМиЗ, 2005. С. 190–194.

Поступила в редакцию 7 мая 2019 года

 

Language

E-mail

This email address is being protected from spambots. You need JavaScript enabled to view it.

Мы индексируемся в: